

Gandhinagar being a planned city has good infrastructure facilities but lacks good public transport facility

Increase in private transport dependency create congestion, safety issues and adverse impact on environment

Hence it is important to understand the transport dynamics of the city, to change the mode choice of people from private to public mode of transportation

Need for Study

Aim

To Propose Feasible Public Transportation Network Which Provide Alternative Mobility Option For Private Mode Of Transport Users.

Objectives

- To understand the transport dynamics of the city.
- To develop public transportation network within city.
- To propose institutional framework for operation and management of public transport system.

Scope & Limitation

The scope of the study is limited to the GMC area and does not cover the entire GUDA area.

Research Design

Methodology

^{*} GIS: Geographic Information System, PHPDT: Peak Hour Peak Direction Traffic

Design principles for the public transport network effect

- Simple and direct network structures
- Plan a hierarchy of lines into a network
- Plan for speed, consistency and reliability
- Coordinate convenient transfers
- Provide clear, ubiquitous and consistent information and marking

Route Planning Service Type

- Trunk-Feeder Services
- Direct Services

Direct and indirect line structures

Trunk-feeder services

- Larger vehicles in high density corridors; smaller vehicles in low density corridors feed them (Bogota, Pereira)
- Transfer required

Advantages

- Ability to closely match supply and demand
- Increases the number of passengers per vehicle (load factor)
- Feeder buses are smaller and cheaper to procure
- Usually accompanied by bus sector reform (concessions, contracting and operational control)

Disadvantages

- Requirement of transfer
 - Customers with baggage, children find transfers difficult
 - Customers tend to penalize
 "waiting time" more severely than
 "travel time"
 - Occasionally, transfers may imply a detour
- Infrastructure costs to build transfer stations and maintaining them

Direct services

 Take passengers directly from origin to destination; no need of transfer (Pune, Delhi)

- Advantages
 - Time savings
 - Minimum transfers
 required
 - More direct routing to destination
 - Infrastructure costs
 savings
 - Interchange stations may not be constructed

Disadvantages

- Operational efficiency
 - Same bus is used throughout the route
 - Lower load factor; more vehicles
- Lesser average speeds/ more travel time
 - Congestion outside segregated corridor
- Additional vehicle costs
 - Same vehicle may need to have doors on both sides or
 - Bus stops on corridor may double if curb side bus stops are built
- Complicated junction and signal phase design

Study Area (Regional Context)

Source: GUDA, 2015

Study Area Demography

8

Study Area (Land Use Pattern)

Ν

Study Area (Street Patterns and Junctions)

- Capital of the State
- Availability of proper IPT connectivity
- Majority of roads are lined with Tree Plantation
- Presence of Traffic Monitoring
 Infrastructure
- Use of Renewable energy

- Selection among 100 Smart cities.
- Upcoming MEGA project.
- GIFT city and Institutional Zone
- Improving traffic regulatory mechanisms
- Cycle sharing projects
- Development of IT SEZ

- Less usage of Public transportation
- On-street Parking
- Lack of Mixed use development

• Use of contemporary fuel leading to increase in pollution

- Increasing dependency on Private vehicles
- Tag of "Green City" at stake
- Dependency on other cities for employment

SWOT Analysis

Total Population of City 2,06,167 Avg. HH Size 5 Total HH of City 41,933

Total sample size ~ 1% of the total households 419HH

Distribution among sectors according to the number of households in the sectors.

Sample Size Selection & Survey Covered

Total Households surveyed = 474 (419 within sectors + 55 surrounding villages)

26-40

27%

Building Typology

Family Size

Data Analysis HH profile

Data Analysis

Data Analysis

Inferences

Major trips are towards Sector 21,24,6,7 & 16. Because of agglomeration of Commercial activities.

Trips towards Sector 10 are also high, due to Institutional zone.

Trip Links

(Origin-Destination survey)

Demand

(Internal to Internal within sector)

(Internal to Internal other sector)

Attraction and Production TAZ are

Sector 21, 23, 24. 29, 25 GIDC, 10,16, 2,3,4,5,6,7,8 O – D Survey Analysis

Public transit

Data Collection (Existing Transportation Modes)

Para transit

Main bus station at Pathikashram (Gh~3), Start from Gh~6, Other pick up stand at Sachivalay.

> Data Collection (GSRTC route and bus stop mapping)

Data Collection (VTCOS route and Bus stop mapping, PHPDT survey)

In pick hours

Data Collection (Cordon Point Survey)

Out flow

cycle

Ch 7

PCU (Outflow)

Out flow

PCU (Outflow)

Morning Data~ 9:30 to 10:30

Note: Similar survey was done for afternoon and evening.

Cordon Point Survey ~ Inference

Note: Similar survey was done for afternoon and evening.

Dispersed Network Strategies

Proposals (Concept of Route Planning)

Conceptual radial network strategy

Radial network strategy in a poly centric city

Source: Thompson 1977 ; Newman and Kenworthy 2006

Radial Network Strategies

Conceptual dispersed network strategy

Conceptual dispersed network strategy indicating transfer opportunities

Proposals (Concept of Route Planning)

	Route 1	Route 2	Route 3	Route 4	Route 5
Distance (km)	16.6	7.1	12.8	10.9	12.8
Average speed (km/hr)	25				
Type of route	Circular	Two Way	Return	Return	Circular
Number of Buses	2	2	1	1	2
Number of drivers	2	2	1	1	2
Timings:	06:15 am	08:45 am	07:30 am	07:30 am	07:15 am
R118~1	11:30 am	10:15 am	09:00 am	09:00 am	12:30 am
	05:00 pm	01:30 pm	10:30 am	01:30 pm	04:00 pm
	08:00 pm	05:55 pm	01:30 pm	04:30 pm	07:00 pm
		07:30 pm	04:30 pm	06:00 pm	
			06:00 pm	07:30 pm	
			07:30 pm		
Timings:	06:25 am	08:45 am			07:25 am
Bus~2	11:40 am	10:15 am			12:40 am
	05:30 pm	01:30 pm			06:30 pm
	09:00 pm	05:55 pm			08:00 pm
		07:30 pm			

	Route 6	Route 7	Route 8	Route 9	
Distance (km)	13	12	9.9	7.5	
Average speed (km/hr)	25				
Type of route	Return	Circular	Return	Return	
Number of Buses	1	2	2	1	
Number of drivers	1	2	2	1	
Timings:	10:30 am	06:30 am	08:15 am, 08:45 am	10:00 am	
Rus~1	01:30 pm	07:00 am	09:15 am, 10:15 am	05:50 pm	
	04:00 pm	08:00 am	01:15 pm, 01:30 pm		
	05:30 pm	09:30 am	02:45 pm, 05:45 pm		
	07:00 pm	10:00 am	06:00 pm, 07:15 pm		
		11:00 am	07:30 pm		
		12:00 pm			
Timings:		01:30 pm			
Bus~2		02:45 pm			
		04:00 pm			
		05:00 pm			
		06:00 pm			
		07:00 pm			
		08:15 pm			

Proposals (Route Planning for Special Routes)

Proposals (Route Planning for GUDA area)

Proposals (Route Planning for Public Transport Mode ~ Integration Map – GUDA+GMC)

Ticketing System

Smart solutions

GIS: Geographic Information System, PHPDT: Peak Hour Peak Direction Traffic

Ticketing System

Smart solutions

A day can be celebrated as a car free day encouraging pedestrians and cyclist. This days can be increased after providing proper cycling infrastructure and this will also help in promoting proper public transport.

GIS: Geographic Information System, PHPDT: Peak Hour Peak Direction Traffic

Institutional Framework

Framework

Licensing (O&M) Contract

Framework

25,000				
20.000	Diesel Bus			
20,000	Electric Bus			
15,000				
10,000				
5,000				
0	↓			
	Average revenueAverage travelAverage travel/daycost/day	Cost Estimation		
		Diesel buses	Electric buses	
Functioning buses: 10	Cost of 1 bus	85,00,000	300,00,000	
Spare buses: 5 Total buses: 15	Cost of 15 buses	1275,00,000	4500,00,000	
	Average revenue/ day	9,256	11,781	
Inference	Average travel cost/ day	4,843	2,064	
Electric buses generate	Average profits earned/ day	4,344	9,717	
82% more profits than	Annual profits earned	2,077,580	3,793,445	
diesel buses per day	Losses	2,847	0	

Source: http://www.thebetterindia.com/49637/electric-buses-vs-diesel-buses-iisc-study/

Thank You