RELATIONSHIP BETWEEN MOBILITY AND PEDESTRIAN SAFETY: A REGION-WIDE LEVEL STUDY

Presented by

Ruchika Agarwala

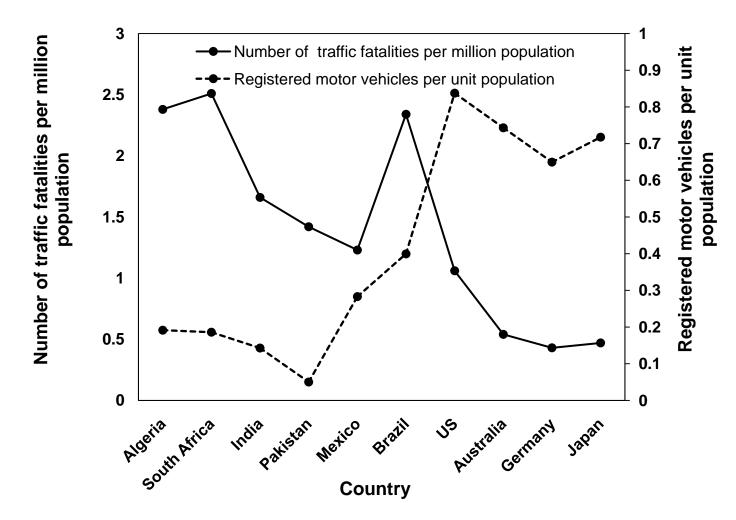
Vinod Vasudevan, Ph.D., P.E. (vinodv@iitk.ac.in)

Department of Civil Engineering

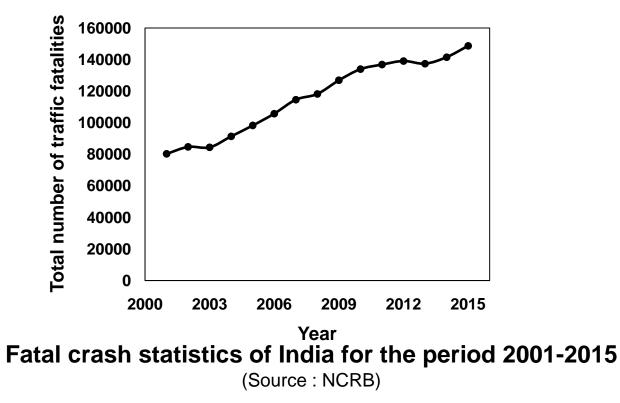
IIT Kanpur

Outline

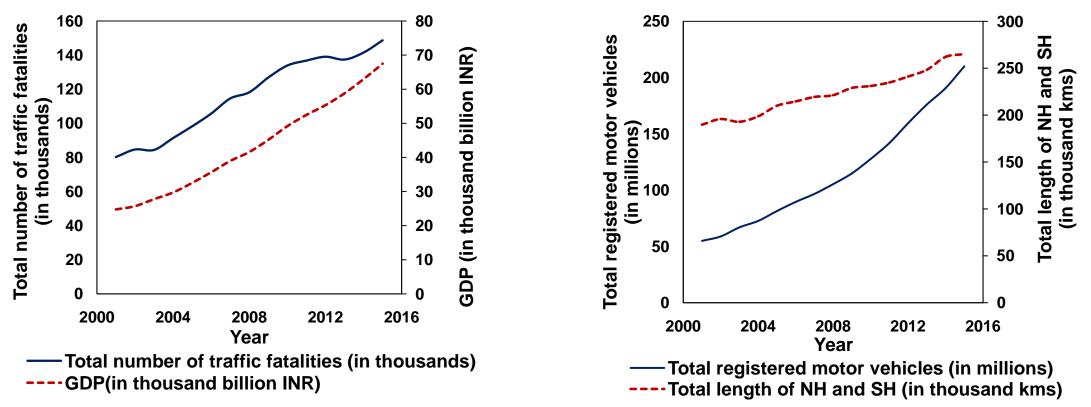
- Introduction
- Problem definition
- Objective of the study
- Need for this study
- Adopted methodology
- Results & Discussion
- Conclusion


Traffic safety-Global scenario

- Road traffic death is a global epidemic
- Total road traffic deaths of 1.25 million per year
- Children, pedestrians, and older people are most vulnerable road users
- Highest fatalities occurs in low and middle income countries
- Costs approximately 5 percent of Gross Domestic Product (GDP)


Traffic safety-Global scenario (Year 2013)

Traffic safety-Indian scenario

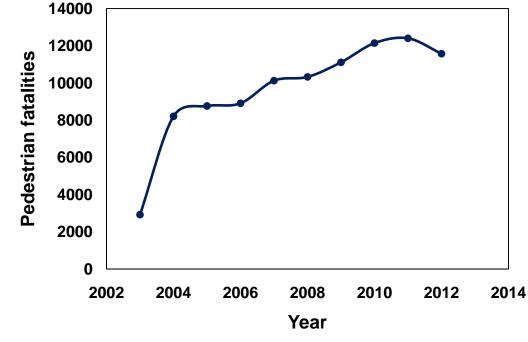


148,707 fatalities and 482,389 injuries in road traffic crashes in 2015 (NCRB, 2015)

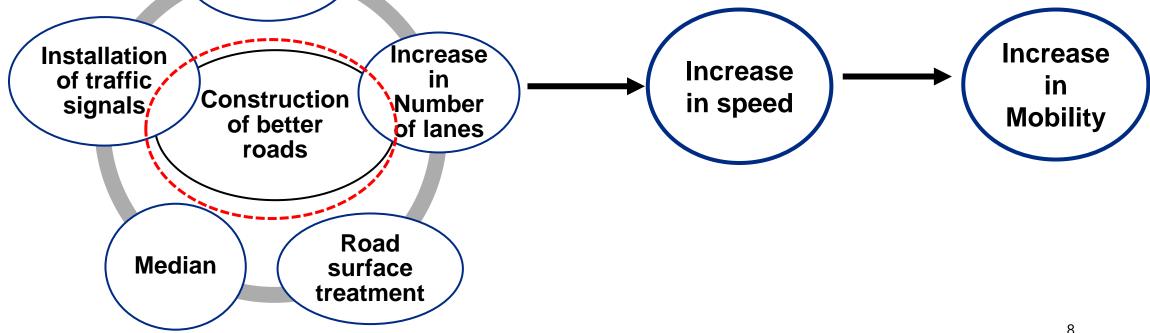
Traffic safety-Indian scenario

Indian statistics for the period 2001-2015.

(a)Traffic fatalities and GDP at constant price (2004-2005 base year) of India during 2001-2015. (b) Total registered motor vehicles and total length of NH and SH in India during 2001-2015.

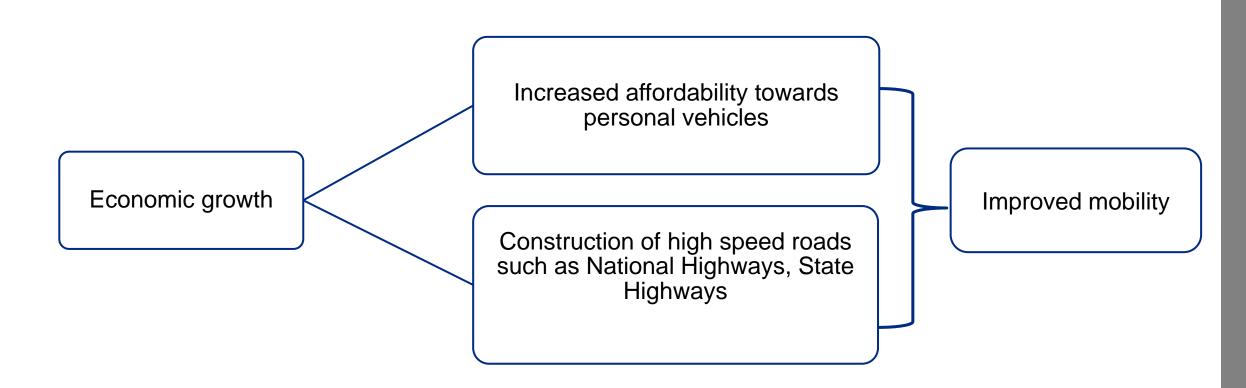

Source : Ministry of Road Transport & Highways (MORTH). *Road Transport Year Book*, 2001-2015 Ministry of Road Transport & Highways (MORTH). Basic Road Statistics of India, 2001-2015.

Pedestrian traffic safety



•Pedestrian fatalities comprise of 22% of global road traffic fatalities

- •Pedestrians, cyclists and motorcyclists comprises half of total fatalities
- •Rapid economic growth in developing countries enhances mobility



Problem definition At a micro level Increase in lane width

Problem definition

At a region-wide level

Objective of the study

To study the relationship between mobility and pedestrian fatality at a region-wide level.

Need for this study

- Pedestrians constitute a major portion of the total traffic
- No studies are available relating mobility improvements with pedestrian safety
- Speed related studies are location specific*
- Region-wide level studies would provide with a general inference

Issues with data

- Availability of reliable data is a serious concern
- Due to issues related to data collection and reporting, only number of fatal data related information are close to accurate
- Even for traffic related fatalities, details are missing
- Available information include:
 - Number of fatalities by year by state and by selected cities
 - Distribution of fatalities by road categories
 - Distribution of fatalities by road user type
 - Distribution of fatalities by time of the day
- No details available for individual crashes

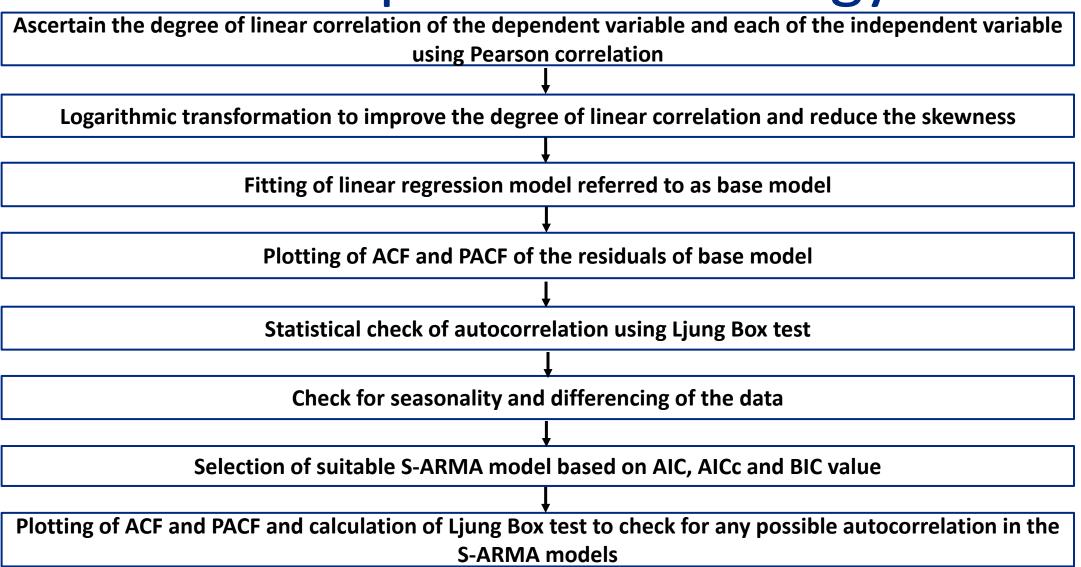
Mobility indices and safety index

Index	M1	M2	M3	M4	M5	M6	SI
Definition	$\frac{NH}{TR}$	$\frac{SH}{TR}$	$\frac{TSR}{TR}$	$\frac{OSR}{TR}$	$\frac{MV}{P}$	$\frac{MV}{L}$	$\frac{1}{\left(\frac{F}{P}\right)}$
Abbreviation	M1, M2, M3, M4, M5, M6 - Mobility indices SI- Safety Index NH- length of National Highways, SH- length of State Highways TSR- length of Total Surfaced Roads						

Mobility indices and safety index

- Data for 30 states and union territories considered
- Data from 2003-2012 considered
- Seasonal autoregressive moving average (S-ARMA) time series models were used
- Type I (5-20 million), Type II (20-60 million), Type III (>60 million)

Definition of Region Types



Type 1: Pop 5 to 20 M	Type II: Pop 20 to 60 M	Type III: > 60 M
Arunachal Pradesh	Assam	Andhra Pradesh
Goa	Chhattisgarh	Bihar
Mizoram	Haryana	Gujarat
Sikkim	Jharkhand	Karnataka
Chandigarh	Jammu & Kashmir	Madhya Pradesh
Himachal Pradesh	Kerala	Maharashtra
Manipur	Orissa	Rajasthan
Meghalaya	Pondicherry	Tamil Nadu
Nagaland		Uttar Pradesh
Tripura		West Bengal
Uttarakhand		
Delhi		

Adopted methodology

15

Indian Institute of Technology Kanpur, Kanpur

Model statistics

			Base model			S-ARMA model			
Relation	Туре	Coefficient	Estimate	t test	p value	Estimate	t test	p value	Model
	I	β ₁	-0.33	-1.15	0.25	-0.75	-0.79	0.43	(0,1)
MI1-PFI	II	β ₁	-0.15	-1	0.32	0.34	1.49	0.14	(0,1)
		β ₁	1.07	3.23	0.00**	0.25	1.96	0.02**	(0,1)10
	I	β ₁	0.58	2.84	0.00**	0.64	3.01	0.00**	(0,1)
MI2-PFI	II	β ₁	0.21	2.93	0.00**	0.23	2.35	0.02**	(0,1)
		β ₁	0.84	6.57	0.00**	0.29	2.19	0.03**	(0,1)10
	I	β ₁	1.97	5.13	0.00**	1.70	3.66	0.00**	(0,1)
MI3-PFI	П	β ₁	0.64	4.31	0.00**	0.65	3.44	0.00**	(1,0)
		β ₁	0.13	0.294	0.764	0.08	0.18	0.85	(0,1)
	I	β ₁	2.05	4.24	0.00**	2.26	2.21	0.03**	(1,0)
MI4-PFI	II	β ₁	0.63	4.59	0.00**	0.62	3.65	0.00**	(0,1)
		β ₁	2.89	10.91	0.00**	1.37	4.86	0.00**	(1,1)10
	I	β ₁	0.28	1.11	0.27	0.76	2.19	0.03**	(0,1)
MI5-PFI	II	β ₁	0.47	4.27	0.00**	0.45	3.59	0.00**	(0,1)
	111	β ₁	0.88	10.54	0.00**	0.54	2.79	0.00**	(0,1)10
	I	β ₁	0.21	1.17	0.24	0.46	2.00	0.05**	(0,1)
MI6-PFI	II	β ₁	0.25	2.43	0.02**	*0.36	1.71	0.09*	(0,1)8
		β ₁	1.09	10.45	0.00**	0.37	2.05	0.04**	(0,1)10

**- Significant at 95%, *- Significant at 90%, Red coloured_not significant

Ljung-box statistics

Relation	Туре	S-ARMA model				
		X-squared	lag	p value		
	I	20.73	20	0.410		
MI1-PFI	II	15.55	20	0.740		
	III	30.19	20	0.066		
	I	20.66	20	0.417		
MI2-PFI	II	17.92	20	0.593		
	III	26.52	20	0.149		
	1	19.44	20	0.492		
MI3-PFI	II	16.64	20	0.675		
	III	0.56	2	0.750		
	I	21.52	20	0.367		
MI4-PFI	II	16.70	20	0.627		
	III	10.00	20	0.522		
		1.91	1	0.168		
MI5-PFI	II	17.82	20	0.599		
	III	30.86	20	0.057		
	<u> </u>	2.21	1	0.136		
MI6-PFI		20.80	15	0.143		
	III	30.16	20	0.067		

Discussion

MI1 with pedestrian fatality

- MI1 shows an increase in pedestrian fatality for group III
- No significant model for Group I and Group II less pedestrians on highways

MI2 with pedestrian fatality

• MI2 shows an increase in pedestrian fatality for all the groups

MI1-Proportion of NH to total roads \checkmark MI2-Proportion of SH to total roads \checkmark

Discussion

MI3 with pedestrian fatality

MI3 shows an increase in pedestrian fatality for group I and group III
Surfaced roads provide better riding quality and high speed

MI4 with pedestrian fatality

•MI4 shows an increase in pedestrian fatality for all the groups
•OSR offer better riding surface and thus higher speed

•Pedestrian sidewalks and crossing facilities are almost non-existent

MI3-Proportion of TSR to total roads MI4-Proportion of OSR to total roads

Discussion

MI5 and MI6 with pedestrian fatality

•MI5 and MI6 shows an increase in pedestrian fatality for all groups•With increase in vehicular population, pedestrian fatality increases

MI5-Proportion of MV to total population \checkmark

MI6-Proportion of MV to total roads \checkmark

Conclusion

- Mobility improvements without safety improvements are detrimental to pedestrians
- Points to the significance of stricter enforcement to include pedestrian safety enhancements in all road categories
- Explored the use of available data from government sources

Thank you!

Contact: vinodv@iitk.ac.in