

Climate Change Mitigation in Urban Transport Sector

A Case Study of Gurugram-Manesar Urban Complex (GMUC), Haryana

Kushagra Sinha

Research Associate, Transport Planning Department, SPA Delhi

Dr. Sanjay Gupta

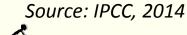
Professor, Transport Planning Department, SPA Delhi

Background

Climate Change has emerged as a major global challenges and Greenhouse Gas (GHG) Emissions from Transport Sector are a

key contributor.

1


Worldwide

Transport Sector accounts for about 23% Global Energy-related Greenhouse Gas (GHG) Emissions.

Source: IPCC, 2014

Urban Areas

About **40%** of the overall transport dependent GHG emissions are generated in **cities**.

Developing Countries

- Growing demand for fossil fuelbased energy and lack of viable alternative fuel sources
- Increasing of GHG emissions.

Source: ADB, 2009

Indian Cities

- Growing % of private vehicles & high dependence on fossil fuels
- High concentration vehicles in some areas

Source: GIZ, 2012

Research Need

Growing Energy Demand (Fossil Fuel based)

GHG Emissions

Developing Countries

Transport forms the backbone of these fast growing economies

Growing per-capita GDP will continue to drive the demand for mobility, especially in urban areas.

Lack of efficient public transport systems and increasing affordability to buy cars are making people rely on personal modes of transport

2A

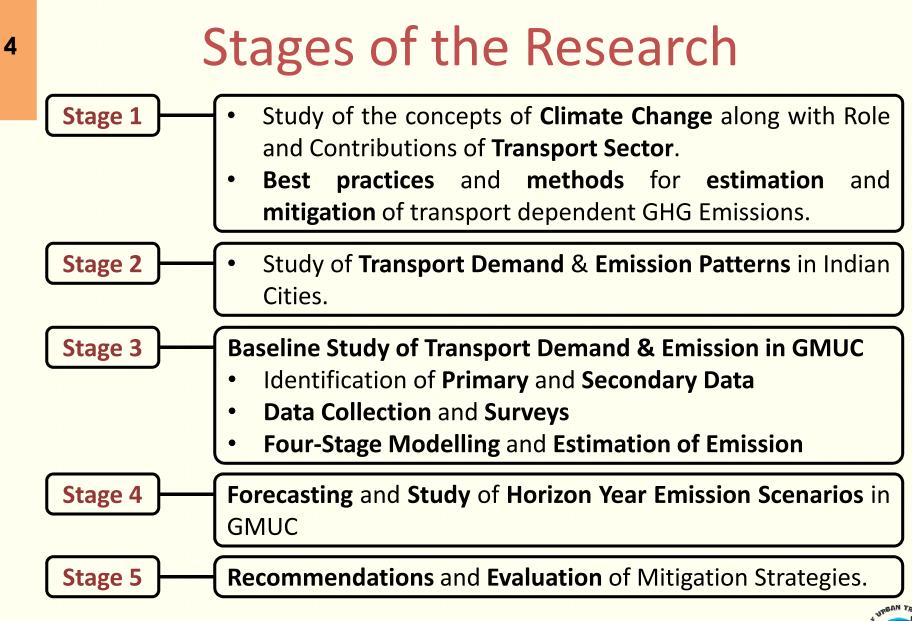
Research Need

At Present Per-capita urban transportation emissions in developing countries is many folds lower than developed country cities.

If the present trend continues, it will be very significant and major contributors of GHG emissions on the planet (*IPCC, 2014*).

There is now a growing international consensus that **future targets for CO**₂ reductions in the **post-2012 Climate Policy Framework** will not be achieved unless CO_2 contribution from the **transport sector in developing countries** is appropriately addressed.

(ADB, 2009)


In Future

Research Objectives

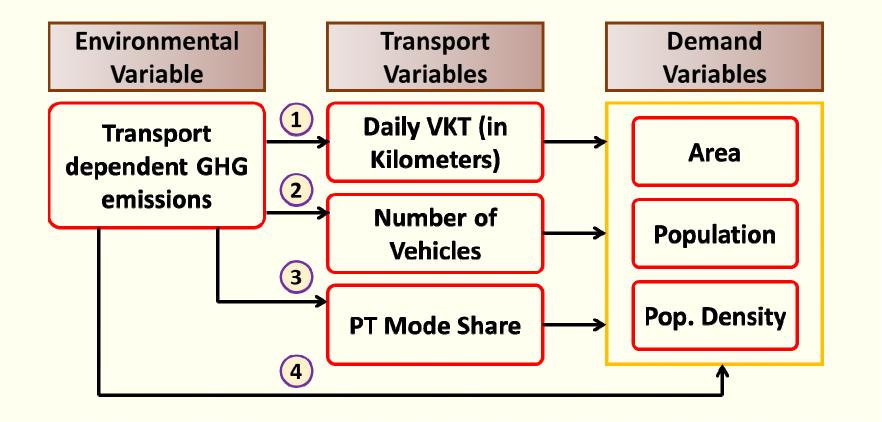
- To understand the concept of climate change with reference to Transport Sector and identify Transport issues affecting the climate.
- 2. To review methods for estimating transport dependent GHG emissions and identify best practices on climate change mitigation in Urban Transport.
- To assess the urbanization and motorization patterns in terms of transport demand and supply across cities in India and its impact on transport dependent GHG emissions.
- 4. To assess the Urban Transport characteristics of Gurgaon-Manesar Urban Complex (GMUC) in terms of urbanization patterns, transport demand-supply and management.
- 5. To estimate the **transport dependent GHG emissions** in Gurgaon-Manesar Urban Complex.
- 6. To evolve and evaluate alternate climate change mitigation policies.

Literature Review

Principal GHGs & GWP

Gas	GWP (20 yrs)
Carbon Dioxide	1
Methane	56
Nitrous Oxide	280
	Source: IPCC Report, 1990

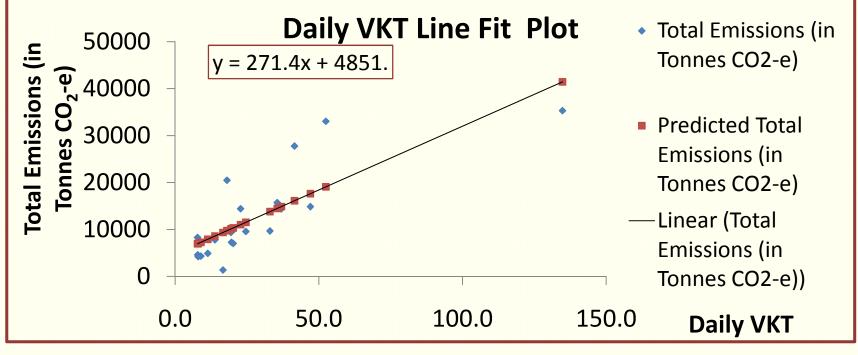
Approaches for GHG Estimation


	· · · · · · · · · · · · · · · · · · ·	
Total fuel / energy consumption	 Specific CO₂ Conversion Factor 	= GHG Emission
(liter)	(kg CO ₂ e / liter) Bottom-Up /	(kg co ₂ e) Approach
(inter)		
(<i>inter</i>)	Bottom-Up A	
	Bottom-Up /	Approach

)Urban Mobility India erence & Expo 2018

Climate Change Mitigation Instruments & Measures

Instrument	Mitigation Measures
Planning	 Integrated Land Use & Transport Public Transport NMT infrastructure provisions Pedestrian Facilities
Management	 Travel Demand Management (TDM) Flexible work hours Shared Mobility
Economic	 Fuel Taxes, Road Pricing Public Transport Subsidies
Technology	 High performance engines Electric Vehicles


Transport Demand & Emission Patterns in Indian Cities

Transport Demand & Emission Patterns in Indian Cities

1. Daily VKT	$R^2 = 0.6$	P-value = 2.56 X 10 ⁻⁵	T-stat = 5.6
2. Number of Private Vehicles	$R^2 = 0.7$	P-value = 5.68 x 10 ⁻⁷	T-stat = 7.5
3. Public Transport Share	$R^2 = 0.5$	P-value = 0.0009	T-stat = 4.1

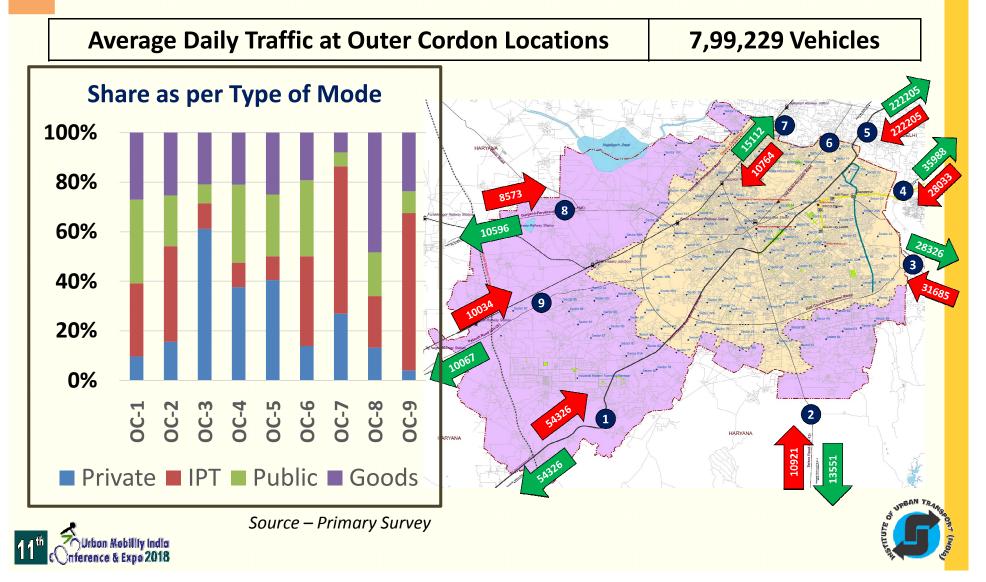
Location	Population* (2017)	Area** (Ha)	Density (Persons per Ha)
GMC	1097733	14299	76.8
Manesar	28827	3250	8.9
Villages	488990	16177	30.2
GMUC	1616662	33726	47.9
*Extrapolated using Census of India Data (1991-2011)			

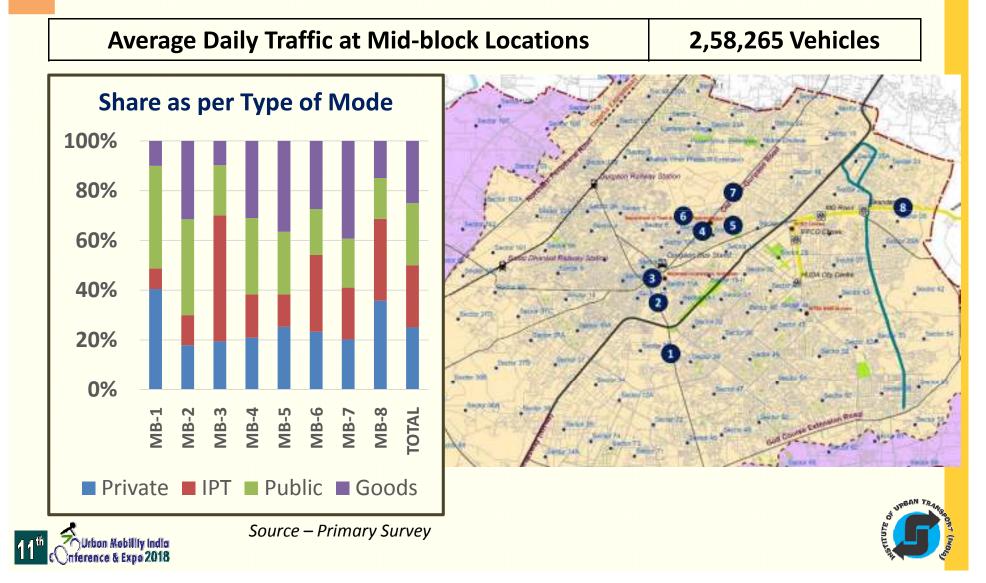
11th Conference & Expo 2018

**GIS Data from Gurugram Municipal Corporation

Case City Profile - GMUC

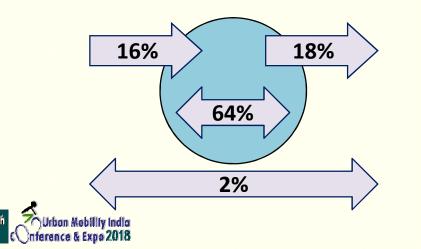
Transport Systems		
Transport System	Modes	
1 Personalized Travel	2-Wheelers, Cars, Hired Taxi, App-based Taxi	
2 Shared Mobility	App-based Carpool Taxi	
3 IPT	Hired Auto, Shared Auto	
4 Public Transport	Mini Bus, Bus	
5 Mass Transit	Metro	
6 Goods Movement	LCV, MAV, Trucks, Tractor	


Source – Primary Survey


8B

Traffic Characteristics in GMUC in Base Year (2017)- Outer Cordon

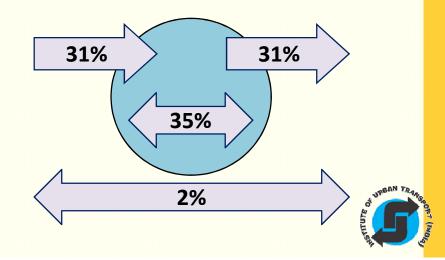
Traffic Characteristics in GMUC in Base Year (2017)- Mid Block

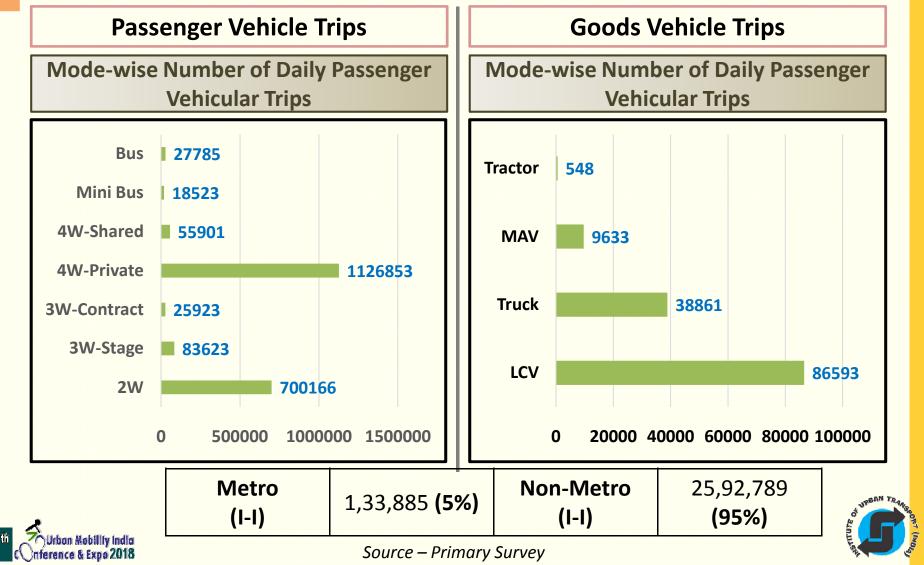


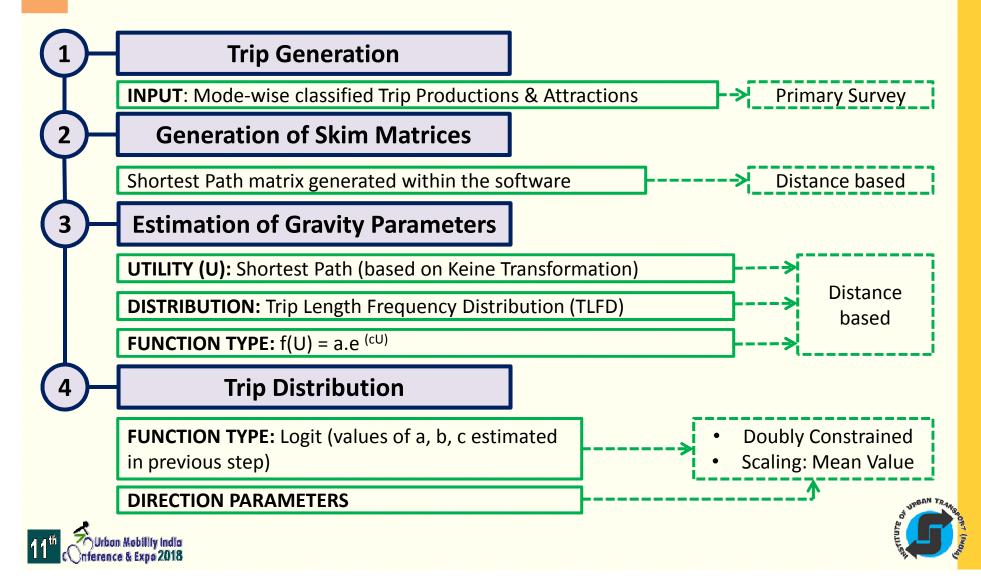
Travel Characteristics in GMUC in Base Year (2017)

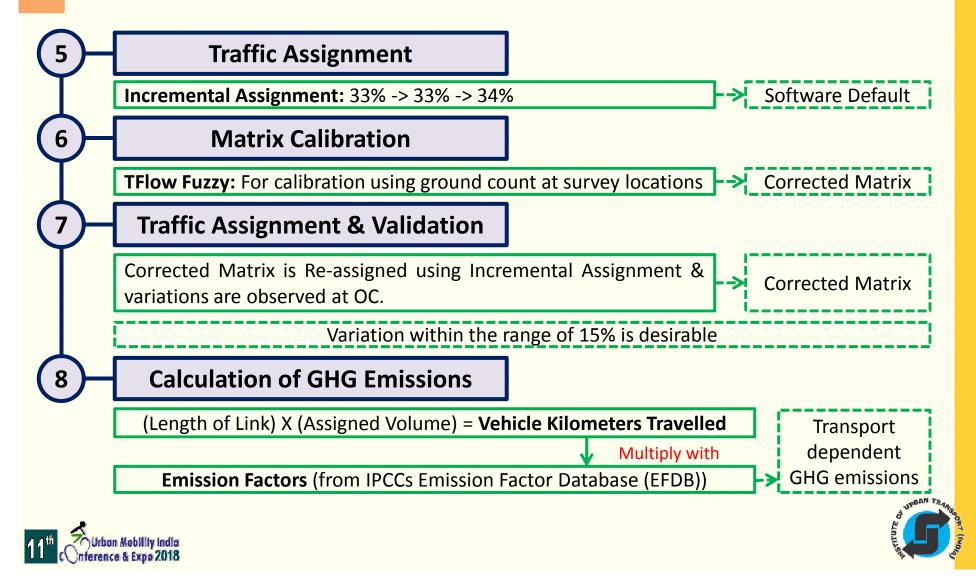
Passenger Vehicle Trips

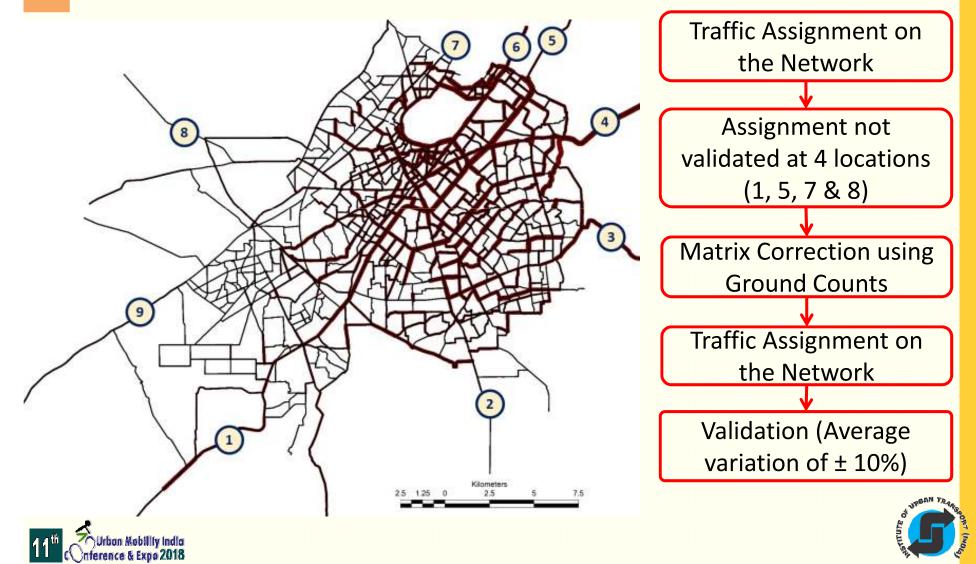
Trip Type	Number of Trips
E - E	48,555
E - I	3,20,378
I - E	3,68,847
-	13,00,994
TOTAL	20,38,774

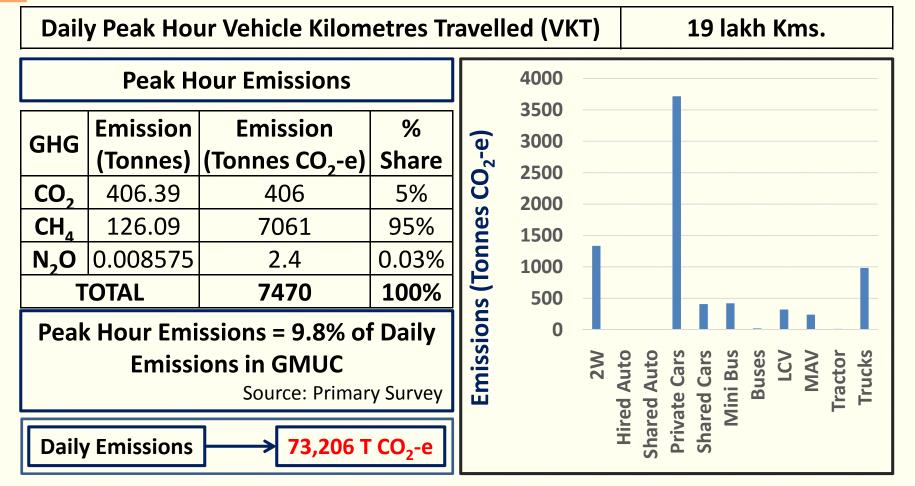

Source – Primary Survey (Passenger Origin-Destination Survey at OC & Midblock locations


Goods Vehicle Trips


Trip Type	Number of Trips
E - E	2,938
E - I	42,610
I - E	42,337
-	47,750
TOTAL	1,35,635


Source – Primary Survey (Goods Origin-Destination Survey at OC & Midblock locations




Travel Characteristics in GMUC in Base Year (2017)

Projection for Planning Parameters for Horizon Year (2027)

Population Projection

		GMUC Population		
	Year	Master Plan (CAGR Method)	Present Study	Variation
	2017	14,13,998	16,16,662	14%
	2018	14,75,790	17,23,033	17%
	2027	21,68,731	29,60,766	37%

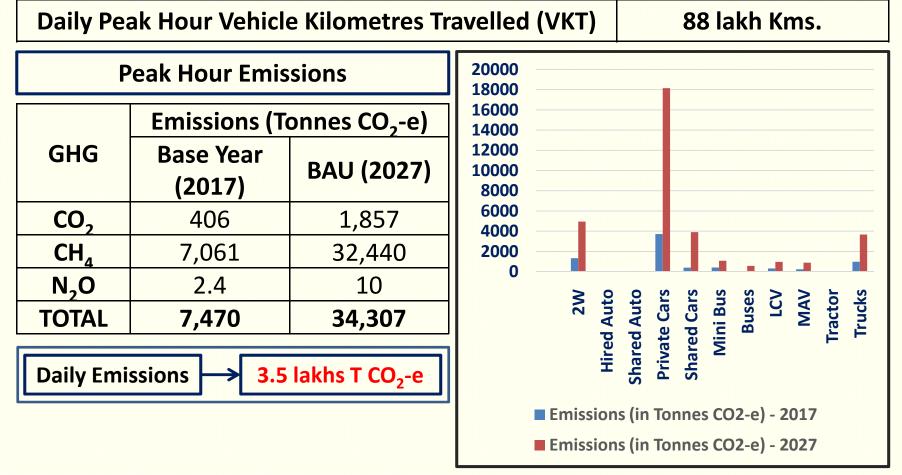
Land Use Projection

S. No.	Land Use	Area (Ha) - 2027
1.	Commercial	1336.8
2.	Industrial	3960.2
3.	Public / Semi-Public	1688.4

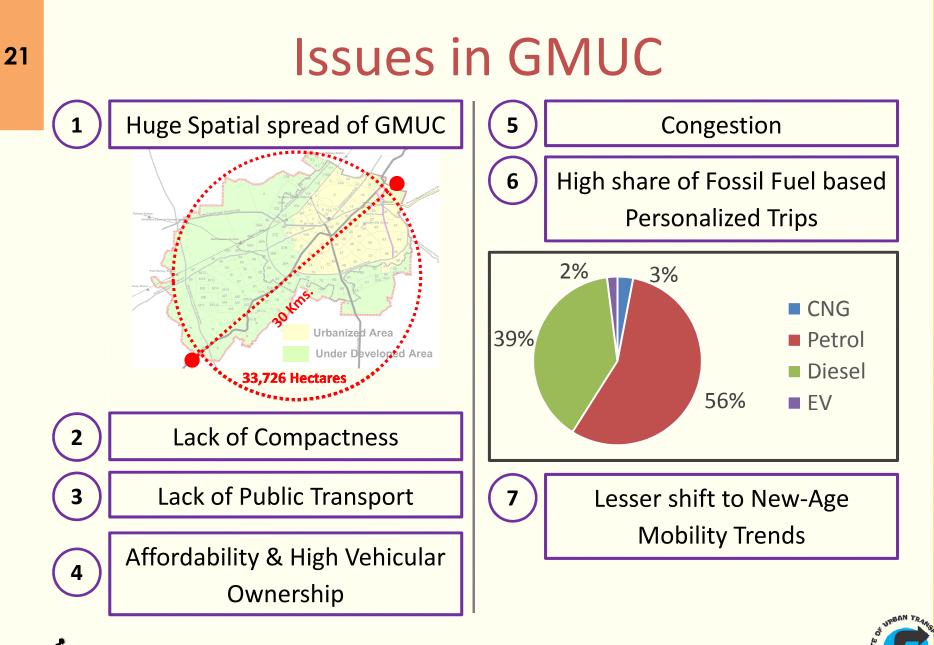
Projection of Trip Ends for Horizon Year (2027)

Horizon Year	Trip Productions	Trip Attractions
2022	22,00,000	22,00,000
2027	30,00,000	30,00,000

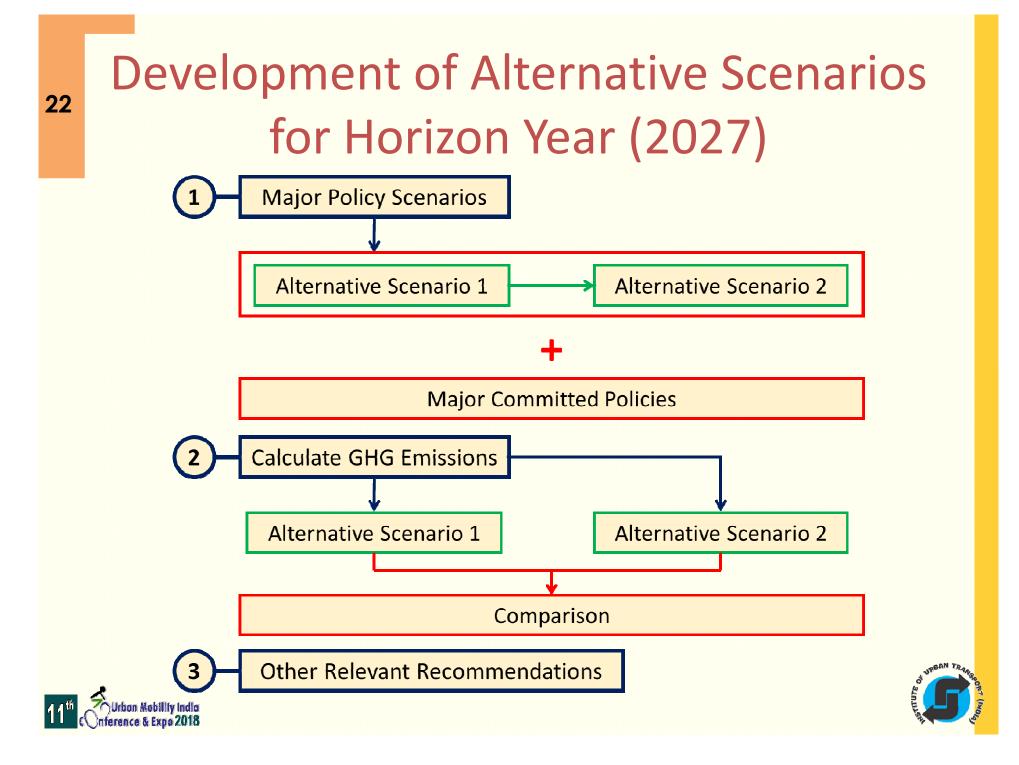
	Value of Trip Ends	
Trip Type	2022	2027
E - E	83,993	1,14,535
E - I	5,92,087	8,07,391
I - E	6,70,702	9,14,593
-	22,00,000	30,00,000
TOTAL	35,46,781	48,36,520
Round Off	36,00,000	49,00,000


Business-As-Usual Scenario for Horizon Year (2027)

Aspect	Consideration	
Bus Transport	Trend BasedLow Mode Share: 5%	
Metro (peak hour)	 Existing (Delhi Metro + Rapid Metro) Ridership: 18,900 Delhi Metro Phase 4 (Yellow Line) Estimated Ridership: 30,000 Rapid Metro Phase 3 Estimated Ridership: 6,900 	
Shared Mobility	 Trend Based (Source: NITI Ayog - 2017) Estimated Share: 3.6% 	
Electric Mobility	 Trend Based (Source: McKinsey & Company - 2017) Estimated Share: 18% 	
New Engine Technology (From 2020)	 BS-VI Compliance (Euro-VI) Emission Standards 	



Business-As-Usual Scenario for Horizon Year (2027)

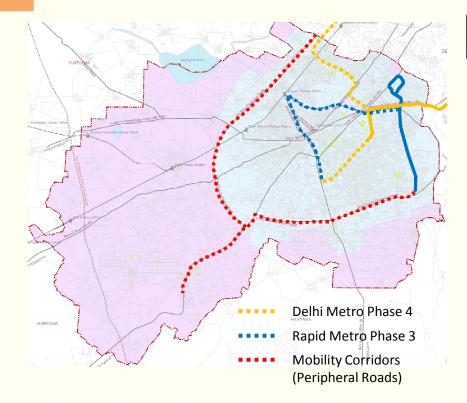


Development of Alternative Scenarios for Horizon Year (2027)

S. No.	Policy Scenario	Purpose
1.	Enhanced Public Transport with Master Plan Development Schemes	To improve the Public transport system of GMUC with consideration of proposed master plan and committed projects.
2.	Transit Oriented Development along stations	To introduce the concept of compact development through TOD and thus improve the overall transport system of GMUC

Other Consideration across Scenarios

S. No. Instruments		Considered Policy
1.	Travel Demand Management	Shared Mobility
2.	Technology	 Electric Mobility BS-VI Compliant Engines


Alternative Scenario 1: Enhanced Public Transport

Aspect	Consideration		
Bus Transport	 New Bus System - CNG based Buses (Source: DIMTS - 2017) Higher Mode Share: 31% 		
Metro (Peak Hour)	 Existing Increase in Ridership: 18,900 Delhi Metro Phase 4 (Yellow Line) Estimated Ridership: 30,000 Rapid Metro Phase 3 Estimated Ridership: 6,900 Mobility Corridors along Northern & Southern Peripheral Roads Estimated Ridership: 90,000 		
Shared Mobility	 Improved Estimated Share: 10% 		
Electric Mobility	Trend BasedEstimated Share: 25%		
New Engine Technology (From 2020)	 BS-VI Compliance (Euro-VI) Emission Standards 		
~			

Alternative Scenario 1: Enhanced Public Transport

Peak Hour Emissions			
	Emissions (Tonnes CO ₂ -e)		
GHG	BAU (2027)	Alternative 1 (2027)	
CO ₂	1,857	1,647	
CH_4	32,440	28,770	
N ₂ O	10	9	
TOTAL	34,307	30,426	
Daily Emissions 3 1 Jakks T CO			

Daily Emissions

3.1 lakhs T C

Reduction in Transport Dependent GHG Emissions in 10 years (compared to BAU)

Alternative Scenario 2: Enhanced PT with Transit Oriented Development

Pre C
Pur Res
ct er
Raj

Alternative Scenario 2: Enhanced PT with Transit Oriented Development

Proposed Population Density around Interchange

Predominant Character	Up to 1000 Meters	Between 1000 - 2000 Meters	
Hub	1,000 PPH	830 PPH	
	Source: Kadkadooma TOD Project,	UTTIPEC, Delhi Development Authority	
Asp	Consideration		
1. Maximum Population th	1. Maximum Population that can be Accommodated		
2. Population to accommo	2. Population to accommodate by 2027		
3. Self contained Users (30	30%		
4. Metro Users (70%)	9,40,873		
5. Daily Metro Ridership		7,80,925	
6. Peak Hour Metro Riders	80,000 (approx.)		
Urban Mobility India		A LULIA	

Alternative Scenario 2:

Enhanced PT with Transit Oriented Development

	Aspect	Consideration		
	Bus Transport	 New Bus System - CNG based Buses (Source: DIMTS Report - 2017) Higher Mode Share: 31% 		
	Metro (Peak Hour)	 Existing (Delhi Metro + Rapid Metro Phase 1 and 2) Trend based Increase in Ridership: 18,900 Delhi Metro Phase 4 (Yellow Line) Estimated Ridership: 30,000 Rapid Metro Phase 3 Estimated Ridership: 6,900 Mobility Corridors along Northern & Southern Peripheral Roads Estimated Ridership: 90,000 Impact of Transit Oriented Development: 80,000 		
	Shared Mobility	 Improved Estimated Share: 10% 		
	Electric Mobility	 Trend Based Estimated Share: 25% 		
ťh	New Engine Technology Onference & Expo 2018	 BS-VI Compliance (Euro-VI) Emission Standards 		

28

Alternative Scenario 2:

Enhanced PT with Transit Oriented Development

Peak Hour	Peak Hour Emissions in Tonnes CO ₂ -e for Horizon Year (2017)			
GHG	BAU	Alternate 1	Alternate 2	
CO2	1,857	1,647	1,337	
CH4	32,440	28,770	23,682	
N ₂ O	10	9	7	
TOTAL	34,307	30,426	25,026	

Daily Emissions -> 2.5 lakhs T CO₂-e

Reduction in Transport Dependent GHG Emissions in 10 years (compared to BAU)

Conclusion & Recommendations

Conclusion

- Future targets for controlling the rate of Climate Change will not be achieved unless emissions from the urban transport sector in Developing countries is reduced.
- There is a strong relationship between Transport Factor (like Daily VKT in a city) and Gross Emissions from the Transport sector.
- As the size of city increases, emissions increase drastically in the absence of efficient Public Transport.
- Major Issues in GMUC
 - Very high pace of Urbanization and Migration.
 - Very minimal share of passenger trips are made by Public Transport
 - Large emissions in the core area due to reduced travel speeds
 - Lack of connectivity in areas outside GMC which encourages personalized transport.
 - Huge dependence on the Fossil Fuel based vehicles and it is increasing at an exponential rate.
- If the present scenarios continues in GMUC, then in the coming 10 years, the total GHG emissions will increase by 359%.

Conclusion & Recommendations

Specific Recommendations

Alternate scenario 2 will result in the best possible results because TOD will create a compact type of development and support mass transit options.

Generic Recommendations

- Planning for Non-Motorized Transportation (NMT)
- Low Emission Zones (LEZs)
- Speed Restrictions
- Regulating Parking Supply
- Road Pricing
- Vehicle Taxation
- Intelligent Transport System

Thank You

