PTV USER GROUP MEETING - 2016, GANDHINAGAR

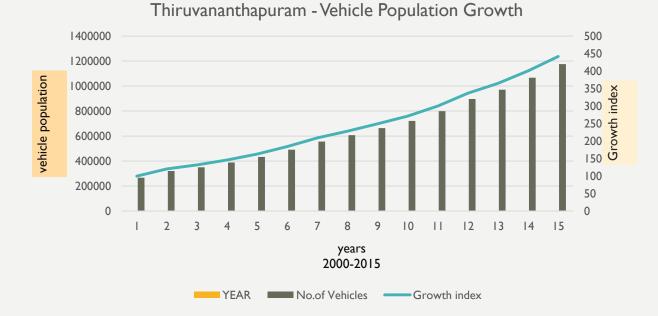
IMPACT OF IMPLEMENTING CONGESTION CHARGING USING DYNAMIC ASSIGNMENT IN VISSIM

A CASE STUDY OF THIRUVANANTHAPURAM CITY

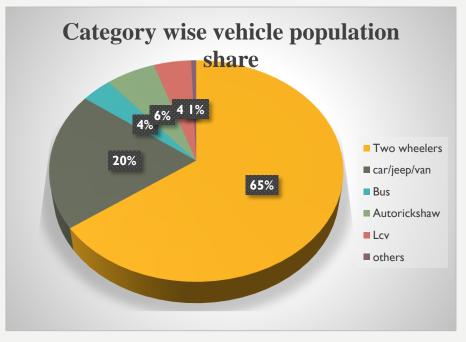
GUIDED BY B.ANISH KINI Junior Scientist Traffic And Transportation Division NATPAC,THIRUVANANTHAPURAM

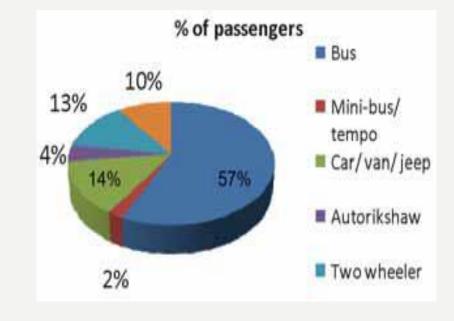
PRESENTED BY JOBSON JOSEPH Mtech Scholor Rajiv Gandhi Institute of Technology Kottayam

OVERVIEW


- INTRODUCTION
- GENERAL BACKGROUND
- OBJECTIVES
- SCOPE OF THE STUDY
- LITERATURE REVIEW
- METHODOLOGY
- DATA COLLECTED
- EXISTING CONGESTION LEVEL IN THE CBD
- CONGESTION CHARGING
- VISSIM SIMULATION
- RESULTS
- CONCLUSION
- RECOMMENDATIONS
- REFERENCES

INTRODUCTION


- **Congestion** causes frustrating and costly delays for drivers, urban and regional air pollution, national energy security concerns and global climate change.
- Mobility in medium and big cities is a huge challenge due to congestion during peak hours, which is mainly due to excessive use of private vehicles.
- **Congestion charging** addresses these issues by charging drivers for operating vehicles at highly congested times and locations to reduce travel times, improve air quality and decrease greenhouse gas emissions.
- It is a market or demand-based strategy designed to encourage a shift of peak period trips to: a). off-peak periods; b). to routes away from congested facilities or c). to alternative modes high occupancy vehicles or public transit during the peak demand periods.


GENERAL BACKGROUND

- Thiruvananthapuram is an emerging metropolitan city in the southernmost part of India and is the capital of Kerala.
- The fundamental objective of the study was to determine the impact of implementing congestion charging in Thiruvananthapuram city.
- The vehicle population in Thiruvananthapuram district has increased to nearly 4.41 times during the last 15 years Growth rate of 12% per year.

ANALYSIS OF VEHICLE POPULATION AND MODAL SPLIT

Source: NATPAC

Palayam jn

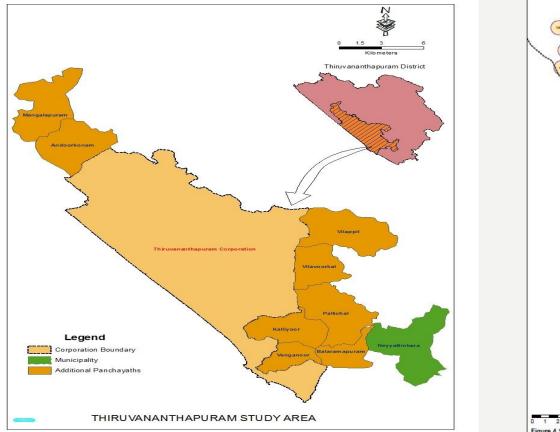
Some Peak Hour Visuals

Vazhuthacaud

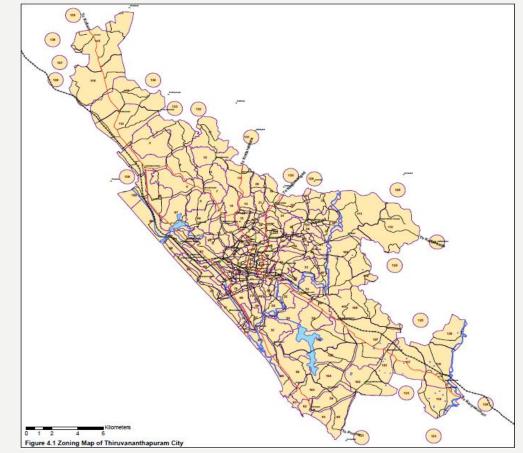
Pazhavangadi jn

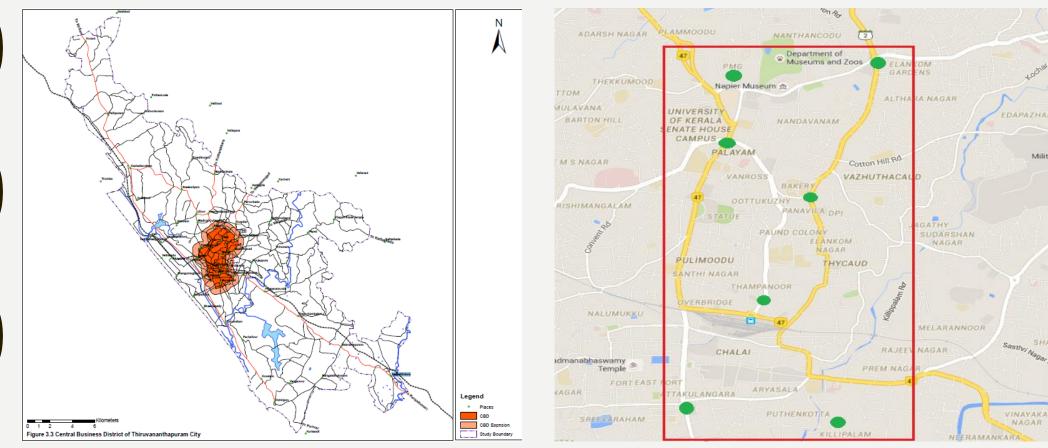
PMG

Annie Mascrene square


OBJECTIVES

- Determine the congestion level in the study area.
- Establish the traffic pattern including OD.
- Device a methodology for implementing congestion charging.
- Determine the impacts of implementing congestion charging.


SCOPE OF THE STUDY


Study area includes 100 wards of Thiruvananthapuram corporation, nearby wards of Neyyatinkara Municipality, and nearby 8 Panchayath .

The total study area is divided into 140 zones

Thiruvananthapuram study area

Thiruvananthapuram CBD area

The charging area covers :-

- ✓ MG road from PMG to Attakulangara.
- ✓ PMG to Vellayambalam.
- ✓ Vellayambalam to Killipalam.
- ✓ Killipalam to Attakulangara.

9

Military Ar

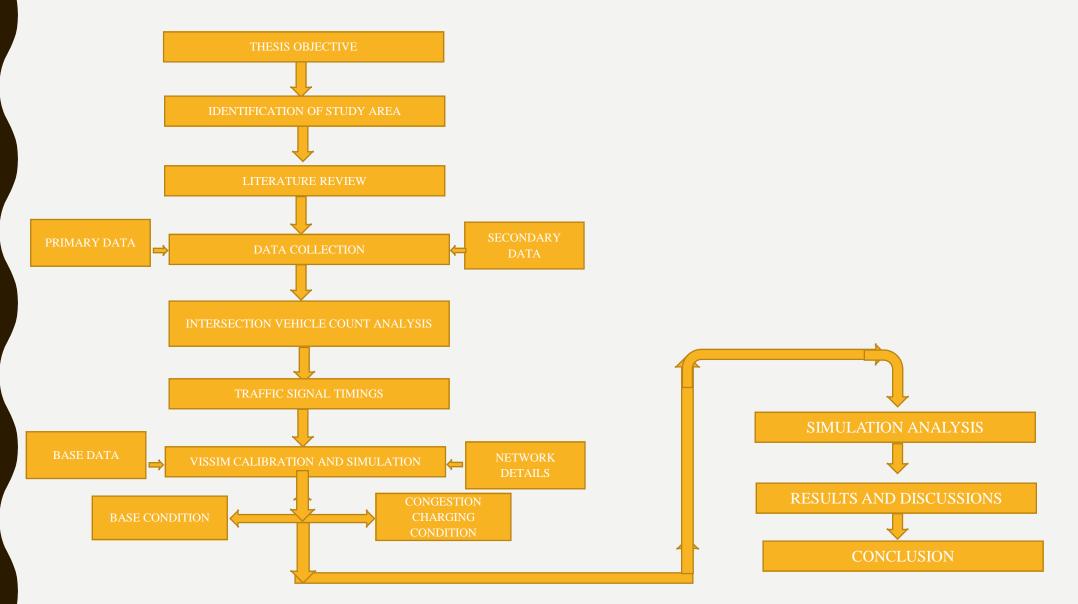
✓ Palayam to Thampanoor via bakery junction.

LITERATURE REVIEW

AUTHOR	FACTOR STUDIED	CONCLUSION
Sarkar (2009)	Traffic congestion and congestion pricing in Central Business District (CBD) of New Delhi	The external cost of congestion for road users was calculated and then through demand elasticity curves, the level of pricing required was identified.
Tina <i>et.al</i> (2015)	Identification of the most congested corridor of Thiruvananthapuram city and To determine an optimum congestion charge for car users which includes costs of delays, wasted fuel, and environmental costs.	Mahatma Gandhi road corridor between Attakulangara and LMS, which is the major travel corridor passing through the CBD area of Thiruvananthapuram has the highest travel time index value of 4.45 . The congestion price for car users obtained is Rs 14.50 per kilometer

AUTHOR	FACTOR STUDIED	CONCLUSION
Chakrabartty <i>et.al</i> (2015)	Measured the external cost of congestion on the roads of kolkata.	The cost of congestion estimated for the city of kolkata indicates that there is a considerable monetary loss that is being incurred.Rs. 74,077.66 is lost in only two hours (i.E. 9 - 10 a.M. And 6 - 7 p.M.) In a day only on the few selected roads. So the loss for peak hour congestion in a month would be rs. 22, 22,329.8.

CASE STUDIES


		London	Singapore	Stockholm	Milan	Gothenburg	Rome
Traffic effects 📫	Traffic volum e	-16% (2006) -30% charge- able vehicles, +25% busses, +15% taxis, +49% bicycle -21% (2002-2008)	-44% after ALS -10%-15% after ERP compared to ALS - 20%-30% for other extensions of the system	-20% across the cordon	-34% (-49% in user of heavy polluting vehicles)	-10% across cordon, -2.5% vehi- cle-km in Gothenburg	-20% over cordon +15% motor- cycles
	Travel times	-30% delays	speed criteria charge levels between 20- 30 kph and 45-65 kph	-33% in delays	-17% in con- gestion +7% bus speed, +4.7% tram speed	-10-20% reduction median travel time on cor- ridors	+4% in speeds +5% speeds PT
	Public transit ridership	+18%	n.a.	+5%	n.a.	+6%	+5%

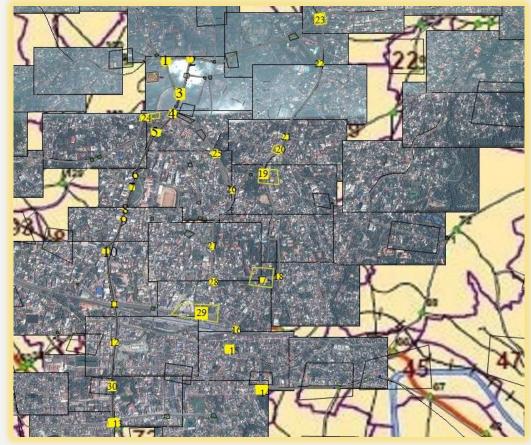
		London	Stockholm	Milan	Gothenburg	Rome
Environmental effects	CO2	-16.4%	-13%	-22%	-2.5% (region)	-21%
	NOx	-13.4%	-8%	-10%	Uncertain	n.a.
	PM 2.5	n.a.	n.a.	-40%	Uncertain	n.a.
	PM10	-15.5%	-13%	-19%	Uncertain	-11%

DYNAMIC TRAFFIC ASSIGNMENT

- A traffic assignment method to predict/estimate how trip-makers may shift to other routes in response to:
- Congestion
- Pricing
- Controls
- Incidents
- Improvements
- Understand how individual travel decisions impact an entire region, by
- Time of day
- Origin-Destination (OD) zones
- Transportation modes

METHODOLOGY

DATA COLLECTION


\Box INTERSECTION TRAFFIC VOLUME SURVEY

- CBD area includes 30 intersections
- Video graphic survey carried out during 8.30am-10.30am ,Tuesday Thursday
- Directional counts were carried out at all intersection arms by vehicle types Two wheeler, three wheeler, Car/Jeep/Van, LCV and Bus.

Data collection at PMG

Intersections within the CBD

Location of survey	Direction of traffic	Bus	LCV	Car/Van/Jeep	Auto	2W	Truck
	Palayam - Sasthamagalam	36	6	210	175	389	0
	Sasthamagalam - Palayam	29	5	150	129	352	2
LMS	Sasthamagalam - PMG	4	9	131	61	208	0
	PMG - Sasthamagalam	6	2	146	68	225	0
	PMG - Palayam	58	1	20	73	60	0
	Palayam - PMG	1	0	6	0	6	0

Data collected from LMS jn

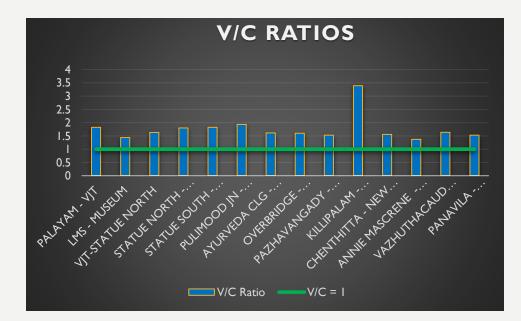
□ TRAFFIC SIGNAL TIMINGS WITHIN THE CBD

- 21 signalised intersections.
- Set PMG as base signal point and offset to other signals for coordination determined.

Noting signal timing at Vellayambalam

Signal timings at PMG

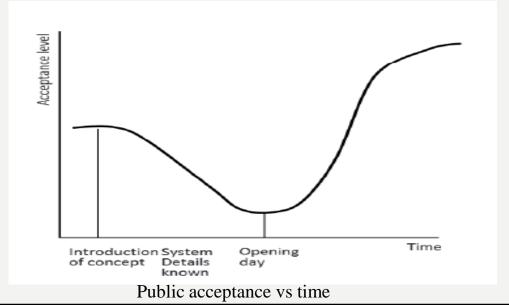
119


120

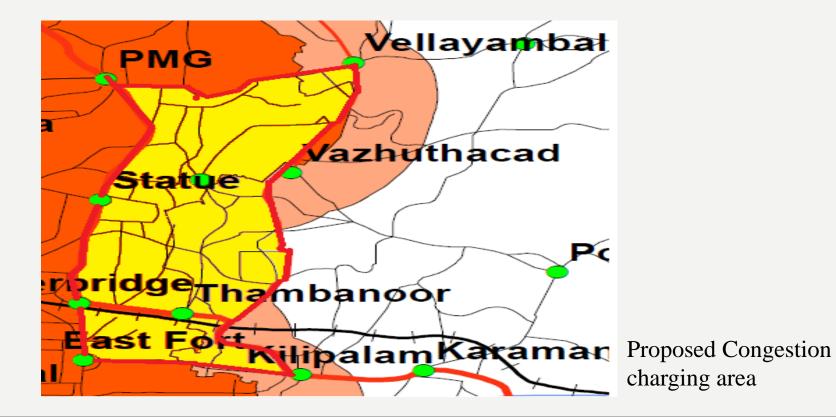
120

119

EXISTING CONGESTION LEVEL IN THE CBD


- Volume of traffic in PCU ,is calculated for one hour at midblock sections between two intersections to determine V/C ratio.
- . Capacity of the road stretch is taken as per IRC 86-1983

CONGESTION CHARGING


- The term 'congestion charging' is used to describe a distance, area or cordon based road-user charging policy around congested city centres .
- Charging does not only eliminate traffic jams, but we are able to collect money perhaps for new buses and better roads.
- Congestion pricing is also known as value pricing, peak-period pricing, time-of-day pricing, and variable pricing.
- > POLITICAL AND PUBLIC ACCEPTANCE

Source:Introduction to congestion charging,ADB

PROPOSED CHARGING SCHEME

- Combination of Area based and Zone/cordon based Congestion charging
- Where people crossing the boundary of the zone/cordon; this can be inbound, outbound or both as well as within the area are charged.
- Peoples have to pay the charge for every trips they makes,
- Additional enforcement cameras (either stationary or mobile) will be needed inside the charging area.

CHARGING PERIOD

- Charging period is only during morning peak hour 8.30 am 10.30am.
- No charging is done during all other time of day.
- There is no charging during Saturdays, Sundays and public holidays.

CHARGING TECHNOLOGY

• Electronic Road Pricing system.

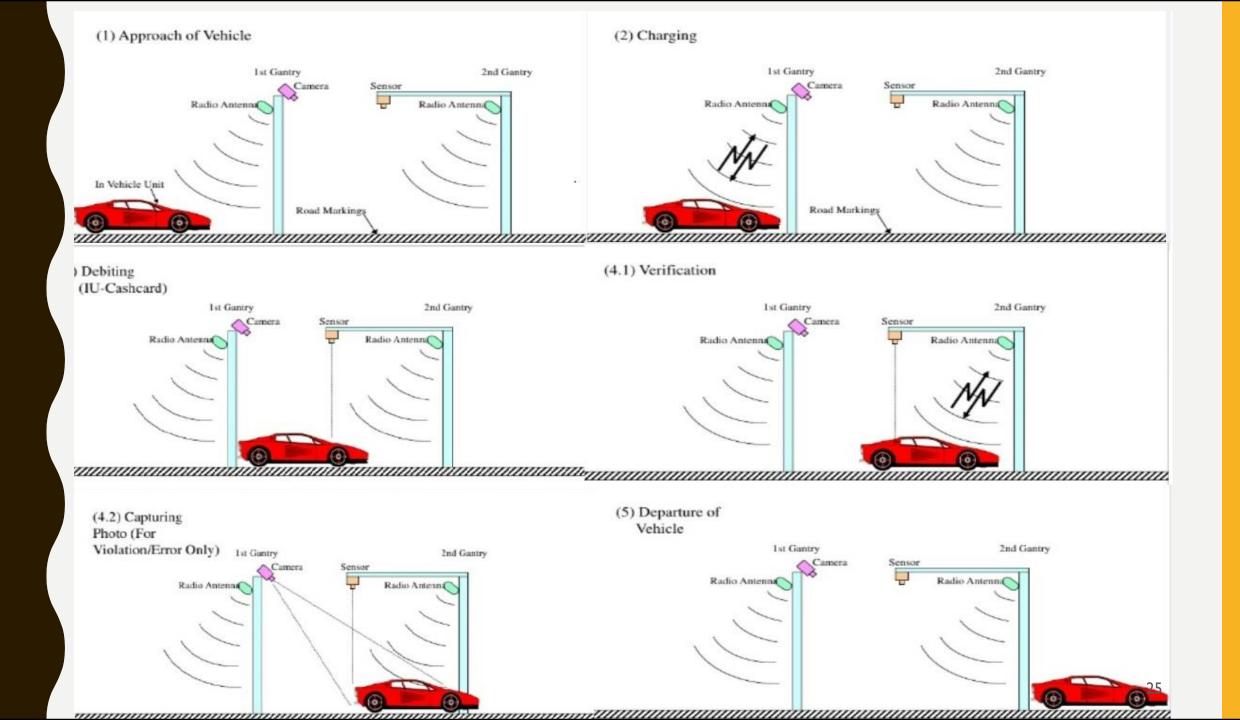
Consists of three components:

- $\checkmark\,$ In-vehicle unit (IU) with or without a smart card called cash card.
- $\checkmark\,$ Erp gantries located at control points across the road and
- \checkmark control centre .
- In-vehicle unit
- ✓ IU is a pocket dictionary-sized device powered by the vehicle battery and fitted permanently to the lower right hand corner of the vehicle's windscreen .
- ✓ IU has a slot for receiving a prepaid stored value contact smart card.
- \checkmark **RFID** can be used as an alternative to IU.

In -vehicle unit

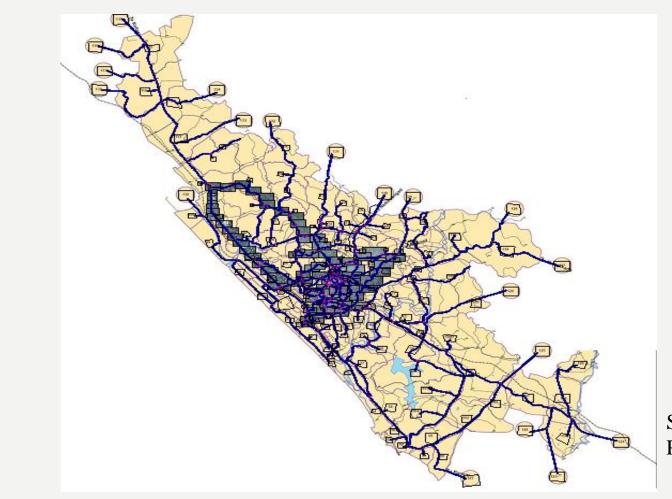
Electronic Road Pricing (ERP) gantries

- Set of two overhead gantries mounted at each control point
- Generally at a height of 6.1 m above road level and placed about 12 – 15 m apart.
- The local controller transfers data continuously with a central computer at a leased telephone lines.


CONTROL CENTRE

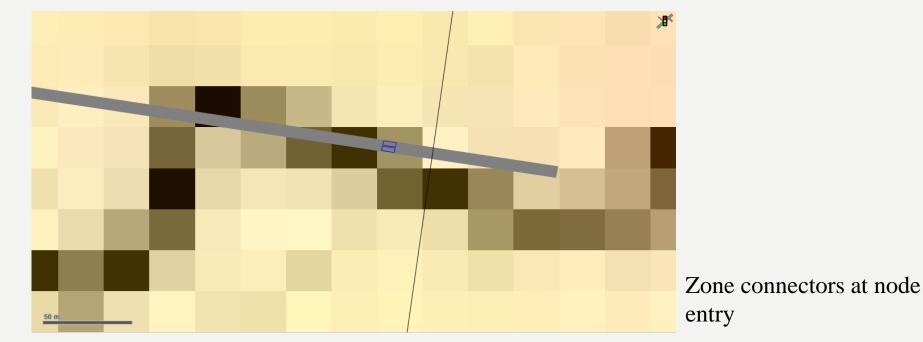
- Control centre houses the central computers and peripherals.
- Centre receives the records of all ERP transactions and records

any faults in the equipment and digital images of violating vehicles.



ERP Gantries.

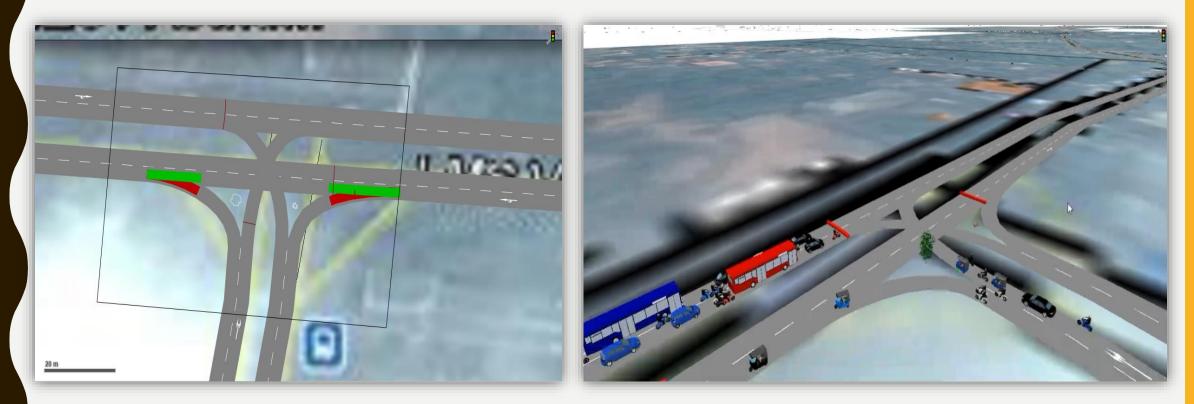
VISSIM SIMULATION


- Entire simulation is carried out using Vissim version 8.
- Simulation process consists of two conditions : Present scenario & Congestion charging scenarios
- Congestion charging scenario is created by adding Link cost to the routes within the CBD

Snapshot of entire study area in PTV vissim 8

DYNAMIC TRAFFIC ASSIGNMENT

- Dynamically assigning traffic flows as per the OD matrix.
- Individual OD matrix for each vehicle class has to be prepared .(140x140 matrix)
- Each zones has to be assigned as nodes in Vissim.
- Also nodes are created at all the junctions for dynamic assignment.
- Two Zone connectors(Parking lots) has to be added at each nodes for the generation and termination of vehicles.
- OD matrix should be in the .fma format .

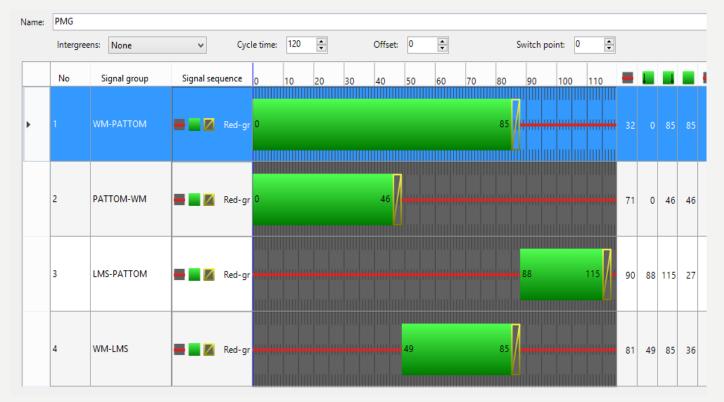


									Car O	D matrix.	fma - Note	epad								- 🗇 🗙
File Ed	lit Format	View H	elp																	
*																				
*																				
	e interv	al [hh.m	1m]																	
0.0																				
	le facto	r																		
0.16																				
	of zones																			
140																				
* Zone 1			4	5	6	7	8	0	10	11	10	13	14	15	16	17	18	19	20	21
* Matr	2	3	4	Э	6	/	0	9	10	11	12	15	14	15	10	17	10	19	20	21
110	71	34	0	0	36	0	79	0	118	0	27	0	36	0	0	27	0	0	0	0
0	212	0	0	0	0	0	0	38	0	0	0	0	0	0	71	0	0	0	0	0
34	0	õ	õ	õ	õ	õ	õ	0	õ	õ	õ	õ	õ	õ	0	õ	õ	õ	õ	õ
0	õ	õ	155	61	õ	õ	õ	115	õ	33	õ	70	39	35	41	78	39	õ	38	õ
0	0	0	61	0	0	0	0	0	0	0	ø	0	0	0	0	30	0	0	0	0
36	0	0	0	0	0	0	0	0	0	99	0	0	109	71	192	73	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	34
79	0	0	0	0	0	0	0	0	39	0	38	79	39	39	79	118	0	0	0	0
0	38	0	77	0	0	0	0	0	116	33	0	0	75	0	113	0	35	0	0	0
118	0	0	0	0	0	0	39	116	79	0	0	0	0	0	0	39	0	0	0	0
0	0	0	33	0	99	0	0	33	0	0	33	0	33	0	0	0	0	0	0	0
27	0	0	0	0	0	0	38	0	0	33	0	111	150	38	152	114	38	0	0	34
0	0	0	70	0	0	0	79	0	0	0	111	0	71	0	0	35	0	35	0	0
36	0	0	39	0	109	0	39	113	0	33	150	107	72	109	36	112	35	41	0	170
0	0	0	35	0	106	0	39	0	0	0	38	0	71	0	70	247	0	0	0	0
0	71 0	0 0	41 78	0 30	192 73	0 0	79 118	113 0	0 39	0 0	152 114	0 35	36 150	70 209	496 124	124 77	35 179	41 41	38 38	170 68
27 0	0	0	39	0	0	0	0	35	0	0	38	0	70	209	35	179	0	41 0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	35	41	0	41	41	0	82	0	102
0	ø	ø	38	ø	38	õ	0	ø	ø	ø	õ	0	0	õ	38	38	0	02	ø	0
õ	ø	õ	0	õ	0	34	õ	õ	õ	õ	34	õ	170	õ	170	68	õ	102	õ	õ
õ	õ	õ	õ	30	36	0	õ	õ	õ	õ	0	õ	72	õ	0	43	õ	0	õ	õ
38	0	0	0	30	0	36	0	0	39	0	0	36	36	35	115	38	0	0	0	0
79	0	0	41	0	0	0	0	0	0	0	0	0	0	41	123	287	35	0	0	0
0	0	0	0	0	0	0	0	75	0	0	0	0	0	0	0	0	35	0	38	68
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	41	0	0	0	0
131	0	0	116	0	75	0	39	113	0	0	0	70	153	420	83	77	141	0	0	102
0	0	0	0	0	0	0	118	0	39	0	0	0	0	35	88	77	70	41	0	0

Car OD matrix file

INTERSECTION REPRESENTATION

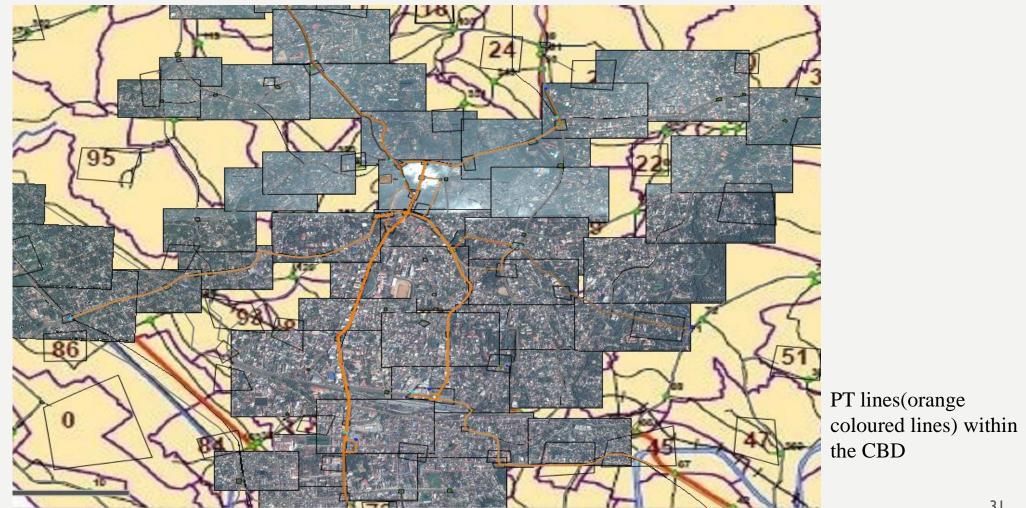
• The foremost aspect is to accurately represent the geometry defined by the number of approaches, width of each approach and turning space.



LMS junction

Realistic representation of LMS junction

TRAFFIC SIGNAL CONTROLS


- In vissim each traffic signals are termed as signal controllers and each phase of a signal controllers as signal groups.
- Signal groups are the smallest control unit belonging to a signal controller assigned a unique id in vissim.
- All the 21 signals within the CBD are coordinated as in real by adding offsets



Signal groups at PMG junction

PUBLIC TRANSPORT LINES AND STOPS

- 17 PT lines and 23 PT stops within CBD.
- Bus schedules during 8.00 am 10.00 am is collected from KSRTC bhavan.

Realistic representation of bus stopping at Saphalyam bus stop ,Palayam

OVERALL NETWORK

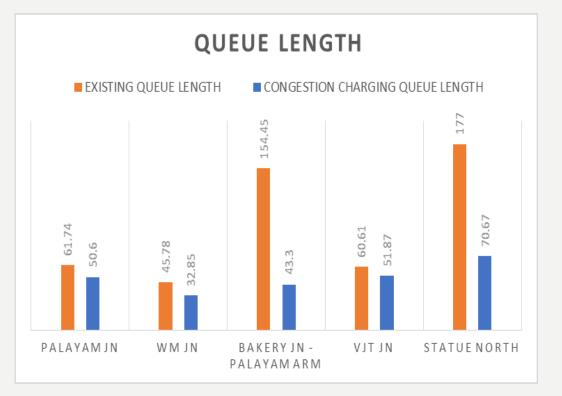
Movavi Screen Capture Trial Version

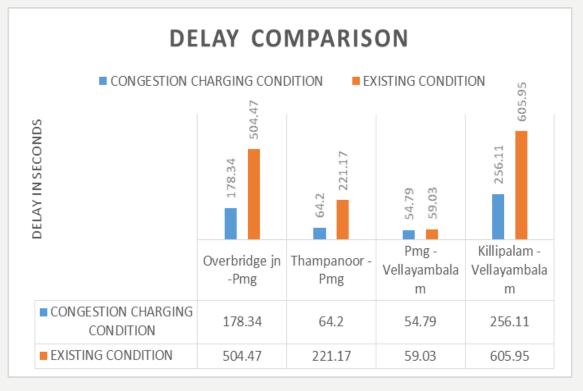
movavi.com/sc-bu

VELLAYAMBALAM - PMG

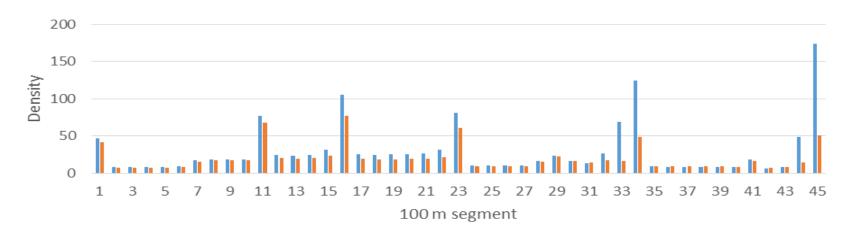
Movavi Screen Capture Trial Version

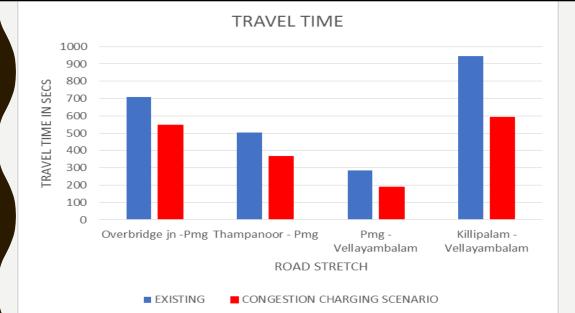
the same at

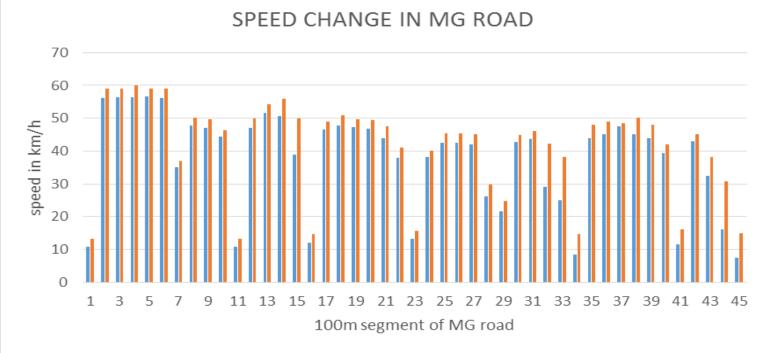

movavi.com/sc-buy

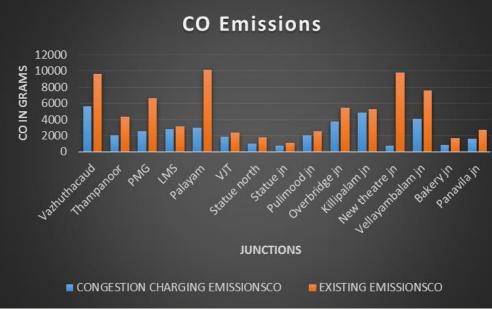

THAMPANOOR - PALAYAM

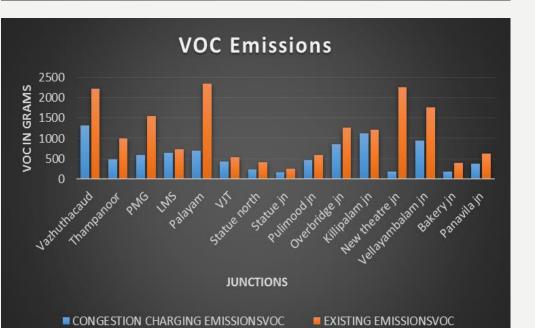
SIMULATION RESULTS

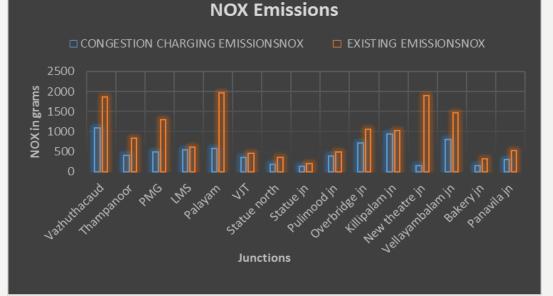

COMPARISON OF EXISTING CONDITION AND CONGESTION CHARGING CONDITION

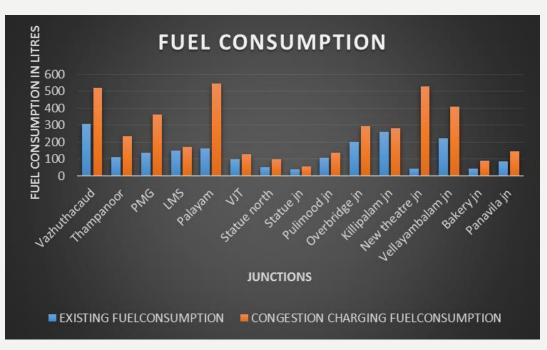





DENSITY PER 100M SEGMENT OF MG ROAD




EXISTING CONDITION
CONGESTION CHARGING CONDITION



#Above emission statistics are just for comparative study only. Actual values may vary

CONCLUSIONS

- Congestion charging can be effectively implemented as a TDM strategy to reduce congestion and its ill effects.
- Study reveals that congestion and its ill effects can be effectively reduced to a great extent inorder to provide better mobility in Thiruvananthapuram city.
- As a result of congestion charging, queue lengths at major intersections get reduced by 38%
- Overall delay in CBD area get reduced by 44%.
- Overall traffic volume at intersections has been reduced by 25%.
- Kochar road had the major impact after congestion charging. Traffic at kochar road has been doubled.
- Density along mg road has been reduced by 15.3% .
- An overall travel time reduction of 48% has been observed in the cbd area.
- Speed of vehicles has been increased by 16%.
- Emissions within the cbd get reduced by 40%. Also significant reduction in fuel consumption observed ⁴¹

RECOMMENDATIONS

- Use of models or tools to forecast and compare effects with respect to change in traffic participating congestion charging.
- Invest in alternative travel options
- Make sure people understand how to use the system.
- Focus on impacts

REFERENCES

- Singh, A., and Sarkar, P. K. (2009). "Determination of congestion cost in Central Business District of New Delhi A case study." *Journal of Indian Road Congress*, 552, 130-14
- Rao, A. M., & Rao, K. R. (2012). Measuring Urban Traffic Congestion—A Review. International Journal of Traffic and Transport Engineering, 2, 286-305
- IRC, Guidelines for capacity of urban roads in plain areas. (1990). IRC: 106. New Delhi.M.
- Alam, M.A., Ahmed, F., (2013). "Urban transport systems and congestion: A case study of Indian cities". Transport and Communications Bulletin for Asia and the Pacific No. 82.
- Congestion Charging: Third Annual Monitoring Report April 2005, Transport For London, Congestion Charging
- Thiruvananthapuram corporation Master Plan,2012
- Ian W.H. Parry (Nov 2008) Pricing Urban Congestion, RFF DP 08-35,

- Aparajita Chakrabartty, Sudakshina Gupta(2015), Estimation of Congestion Cost in the City of Kolkata— A Case Study, Current Urban Studies, 2015, 3, 95-104.
- Central London Congestion Charging Impacts monitoring: Fifth Annual Report, July 2007. (2007). London.
- Börjesson, M., Eliasson, J., Hugosson, M. B., & Brundell-Freij, K. (2012). The Stockholm congestion charges—5 years on. Effects, acceptability and lessons learnt. Transport Policy, 20, 1–12. doi:10.1016/j.tranpol.2011.11.001.
- Dirk van Amelsfort, Viktoria Swedish ICT,Introduction to Congestion Charging, A Guide for Practitioners in Developing Cities, ADB

THANK YOU