

GOVERNMENT OF INDIA MINISTRY OF HOUSING AND URBAN AFFAIRS

EVALUATING CLIMATE CHANGE MITIGATION & ADAPTATION POLICIES FOR URBAN TRANSPORTATION IN INDIA

PROF. (DR.) ASHISH VERMA

Professor, Transportation Systems Engineering Convenor, IISc Sustainable Transportation Lab. (IST Lab.) Dept. of Civil Engineering Indian Institute of Science, Bangalore-560012, India E-mail: a<u>shishv@iisc.ac.in</u>

UMI Conference cum Expo 2022, Session-1 on: 'Climate Change and Urban Transport Impact'

organized by: **MoHUA/IUT (India)** 4th November 2022

OUTCOME FROM INTER-DISCIPLINARY AND COLLABORATIVE RESEARCH

Indo-Norway Project CLIMATRANS

Climate Change Mitigation & Adaptation Policies from transport sector for Indian Cities

Partners – IISc Bangalore, IIT Bombay, SPA Delhi, TERI, TOI, MET, Norway Funded by: Norway Research Council

Research Scholars: Harsha Vajjarapu & Hemanthini Allirani

HOW TO ADDRESS?

"Transportation planning should no more be just about removing congestion points and reducing V/C ratio but should also be about reducing total vehicles kilometre travelled (VKT) by motorized mode and reduced dependence on fossil fuels."

"Eventually it should lead to more liveable Indian cities"

A strong "Systems approach to developing mitigation strategies.
They should also solve core transportation problems as well.
Fundamental strategy should be to reduce no. of motorized vehicles, reduce total motorized VKT, and fix India's energy mix to renewable sources

OBJECTIVES

To develop mitigation strategies for the base year and the horizon years 2030 & 2050 for transportation sector which are aimed at reducing the GHG emissions, local pollutants and traffic congestion from a baseline condition.

To identify the transportation infrastructure that is vulnerable to climate change and assess the impacts of climate change on the transportation infrastructure

To develop adaptation strategies for the base year and the horizon years 2030 & 2050 to evaluate the vulnerability, scope & extent, severity of each flood event caused by climate change to transportation sector

Improving the overall liveability of Bengaluru

LIVEABILITY

In this study, quantitative evaluation of sustainable transport mitigation and adaptation measures are carried out aimed to improve the liveability of Bengaluru in terms of;

- reduced traffic congestion (VKT)
- reduced exhaust emissions (PM, CO, NOX, HC etc.)
- reduced greenhouse gas emissions (CO2)
- reduced carbon emission intensity with respect to GDP growth
- increased consumer surplus of sustainable modes
- improved resiliency of transportation system

GENERAL FLOW CHART OF MITIGATION & ADAPTATION

TRAVEL DEMAND FORECAST FOR 2030 AND 2050 (BAU SCENARIO) – MODE SHARE

- Reduction in two-wheeler & auto from base year could be due to increased income levels and shift towards car or metro
- Reduction in Bus and NMT could be due to introduction of metro

Travel Demand Forecast for 2030 and 2050 (BAU Scenario) -Trip Assignment

User Equilibrium traffic assignment: Every user (in other words, traveller) choses route that minimizes his/her individual travel time or distance and will only increase it if they decide to change their path

)Urban Mobility India ference & Expo2022

Emissions for Base year, 2030 and 2050 (BAU Scenario)

	Pollutant	Tonnes/ year (% change w.r.t base year)			
		Base Year	2030	2050	
	CO	23101	12532 (-46%)	16988 (-26%) 2765.35 (-69%) 7195 (-10%) 6964265 (+580%)	
	НС	8962	3064.01 (-66%)		
	NOx	7968	2131 (-73%)		
	CO ₂	1023722	1702506 (+66%)		
	PM _{2.5}	1113	158 (-86%)	560 (-50%)	
Emissions (g) = VKT (km) * Emission factor (g/km)] [Increased VKT, emission factor value, metro, mode shift towards bus		

erence & Expo2022

EVALUATION OF MITIGATION POLICIES FOR BENGALURU CITY

Ref: Vajjarapu, H., Verma, A., & Hemanthini A. R. (2023). Evaluating the Climate Change Mitigation Potential of Sustainable Urban Transport Measures in India, Journal of Urban Planning and Development, Vol. 149, Issue 1, ASCE.

Policy Bundles For Mitigation

Bundle 1	 Increasing network coverage of Public Transit Cycling and walking infrastructure Additional tax on purchasing vehicles 	Planning & Regulatory Instruments
Bundle 2	 Additional tax on purchasing vehicles Strict Vehicles inspection/ Improvement in standards for vehicle emission Increase in fuel cost 	Economic & Regulatory Instruments
	 Increasing network coverage of Public Transit Defining car restricted roads 	Combination
Bundle 3	 Congestion Pricing Park and Ride Cycling and Walking infrastructure Encouraging car-pooling and High Occupancy Lanes 	of Planning Regulatory & Economic Instruments
	 High density mix building use along main transport corridors 	Combination
Bundle 4	• Bundle 3 + All buses and cars running on electricity	of Planning Regulatory, Economic & Technological

Instruments

INCREASING NETWORK COVERAGE OF PUBLIC TRANSIT

Q	Identifying Congested links	Links that are over congested with traffic are Identified	
		More links are added in the	
O	Add more PT links	zone that has more productions and heavy congestion to reduce load on	
		other links	
	Re modelling	New travel times are obtained & these are used to re model the flows on roads.	Added PT Roads

Variables affected:

- Travel cost
- In vehicle travel time
- Out of vehicle travel time (Public Transit)

For 2030 and 2050, 60.1 km and 30 km of public Transport road network was increased.

Encouraging carpooling and High Occupancy Vehicle (HOV) Lanes

A HOV road network is created

car trips that fall on the HOV network assumed to car pool and a separate OD matrix is created from the original car OD matrix

Assign the car pool trips onto the HOV network and then assign the Public Transportation trips onto the Public transportation network with a preload of car pool OD.

> Private Trip assignment with preloads as zero and reduced road capacity.

Sub-arterial & arterials roads and main transport corridors of Bangalore where HoV lanes can be provided are good places to implement.

Mode Share Comparisons between Policy Bundles & BAU

Increasing network coverage of Public TransitCycling and walking infrastructure

•Additional tax on purchasing vehicles

Bundle 1

Mode Share Comparisons between Policy Bundles & BAU

•Increasing network coverage of Public Transit

•Defining car restricted roads

•Congestion Pricing

•Park and Ride

•Cycling and Walking infrastructure

•Encouraging car-pooling and High Occupancy Lanes

•High density mix building use along main transport corridors

Bundle 3

VKT Comparisons between Policy Bundles & BAU

Emission Factors

The principal emissions generated from transportation sector:

- Carbon Dioxide (CO₂)
- Nitrogen Oxides (NO_x)
- Carbon Monoxide (CO)
- Hydrocarbons (HC)
- Particulate Matter (PM_{2.5})

Renewable share of electricity in future years is assumed to increase (IEA, 2015).

4 Scenarios with different energy mixes

- Scenario 1: New Policies Scenario (IEA, 2015) Non-renewable sources & renewable (74% 26%)
- Scenario 2: Electricity from non-renewable Sources (100 %)
- Scenario 3: Half electricity from renewable and another half from non-renewable sources (50 % 50 %)
- **Scenario 4:** Electricity from Renewable Sources (100 %)

Source: Sharma and Chandel (2020)

Total Emissions (g) = VKT (Km) * Emission Factor (g/km)

Total Vehicular & Total Percapita Emissions – CO₂

Bundle 4 – Percentage Emission Reduction

Percentage Reduction in Emissions with B4-S4 from BAU					
Year/Pollutant	CO	НС	NOx	CO ₂	PM _{2.5}
2030	46	48	57	80	60
2050	53	70	66	94	72

Percentage reduction in emissions when electricity generation is purely from hydropower, solar and wind without bioenergy

Percen				
	Year	BAU - No Bio	B4-S4	
00	2030	36	73	
LU	2050	28	77	Bio energy produces
НС	2030	No change	58	
	2050	No change	80	
NOv	2030	91	99	and PM
NUX	2050	83	98	emissions
0	2030	89	98	Cimissions
CO ₂	2050	82	98	
PM	2030	90	97	
F 1 VI 2.5	2050	92	98]

Total Emission Intensity Comparison -2030

Further, assuming electricity will be purely generated from hydropower, solar and wind without using bio energy in BAU scenario, additional **19%** and **30%** reduction in total CO_2 emission intensity can be achieved in BAU 2030 & 2050 respectively from base year.

EQUITY ASPECTS TO MITIGATION ACTIONS

- Women travelers across income groups contribute lesser to GHG emissions
- The social and economic cost burden of economic and regulatory policies could be differentially higher on low income women travellers

Ref: Vajjarapu, H., Verma, A. (2022). Understanding the mitigation potential of sustainable urban transport measures across income and gender groups, Journal of Transport Geography, Volume 102, 103383

EVALUATION OF ADAPTATION POLICIES WITH RESPECT TO URBAN FLOODING FOR BENGALURU CITY

Road network with flood level Map - BMR

Trip Assignment – BAU Flooding

Base Year BAU Flooding

2030 BAU Flooding 2050

BAU Flooding

BAU - Travel Demand Model Results

BAU - Travel Demand Model Results

Average Trip Length (kms) - BAU

BAU - Travel Demand Model Results

Avg. Daily Vehicle Speed - BAU

Policy bundles for Adaptation

Bundle 1	 Replacement of impermeable road surface with permeable material in vulnerable areas Slum relocation and rehabilitation Providing proper drainage facilities at vulnerable areas Construction of redundant infrastructure 	Land use + Infrastructure
Bundle 2	 Rerouting people during flooding Restricting development in low lying or vulnerable areas Slum relocation and rehabilitation 	Land use + Information (Traffic Management)
Bundle 3	 Replacement of impermeable surfaces with permeable material in vulnerable areas Providing proper drainage facilities at vulnerable areas Rerouting people during flooding 	Infrastructure + Information (Traffic Management)

Comparisons of Vehicle Kilometers Travelled (VKT)

Comparison of Daily Vehicle travel speeds

Comparison of Avg. trip lengths

Comparison of Vehicle Hours Travelled (VHT)

Comparison of Cancelled Trips

RELATED PUBLICATIONS

1.Vajjarapu, H., Verma, A., & Hemanthini A. R. (2023). Evaluating the Climate Change Mitigation Potential of Sustainable Urban Transport Measures in India, Journal of Urban Planning and Development, <u>Vol. 149, Issue 1, https://doi.org/10.1061/(ASCE)UP.1943-5444.0000890</u>

2.Vajjarapu, H., Verma, A. (2022). Understanding the mitigation potential of sustainable urban transport measures across income and gender groups, Journal of Transport Geography, Volume 102, 103383, ISSN 0966-

6923, https://doi.org/10.1016/j.jtrangeo.2022.103383

3.Vajjarapu, H., & Verma, A. (2021). Composite adaptability index to evaluate climate change adaptation policies for urban transport. International Journal of Disaster Risk Reduction, Elsevier, 58, 102205., <u>https://doi.org/10.1016/j.ijdrr.2021.102205</u>

4. Vajjarapu, H., Verma, A., & Hemanthini A. R. (2020). Evaluating climate change adaptation policies for urban transportation in India, International Journal of Disaster Risk Reduction, Elsevier 47, 101528. <u>https://doi.org/10.1016/j.ijdrr.2020.101528</u>

THANK YOU

