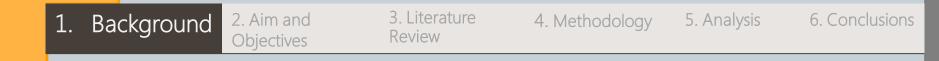


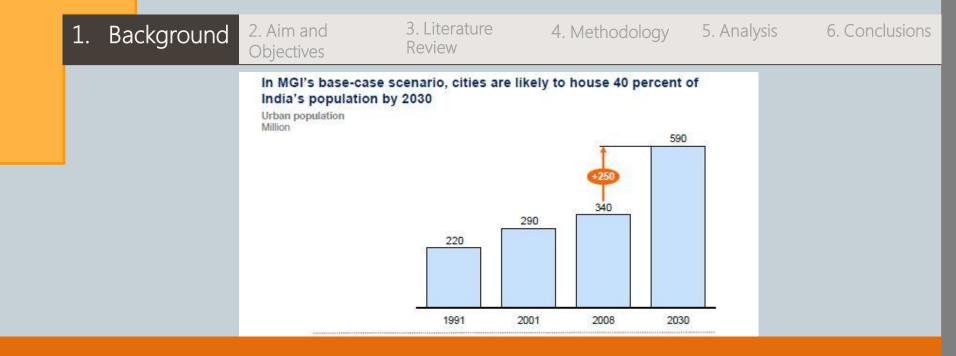
Analyzing Urban Mass Rapid Transit Networks Using Graph Theory


Ashwini Soman Ranade

(Architect, Urban Planner)

Contents

- 1. Background
- 2. Aim & Objectives of Thesis
- 3. Literature Review
- 4. Methodology
- 5. Analysis
- 6. Conclusions



Transportation Networks are majorly planned with demand based approach

Alternative Network based approach

To study transport network characteristics, their Form and also assess their performance.

- Need is to understand the kind of network design and patterns being formed.
- Can network of Indian cities draw lessons from that of similar case city?
 - Cities are planning high capacity public transport systems to cater to the growing transportation demands.
 In planning these capital intensive systems seldom attention is paid to the kind of network being developed

To analyze Urban Mass Rapid Transit networks of different cities with a network based approach; Graph Theory.

1. Review Urban Mass Rapid Transit Networks of different cities.

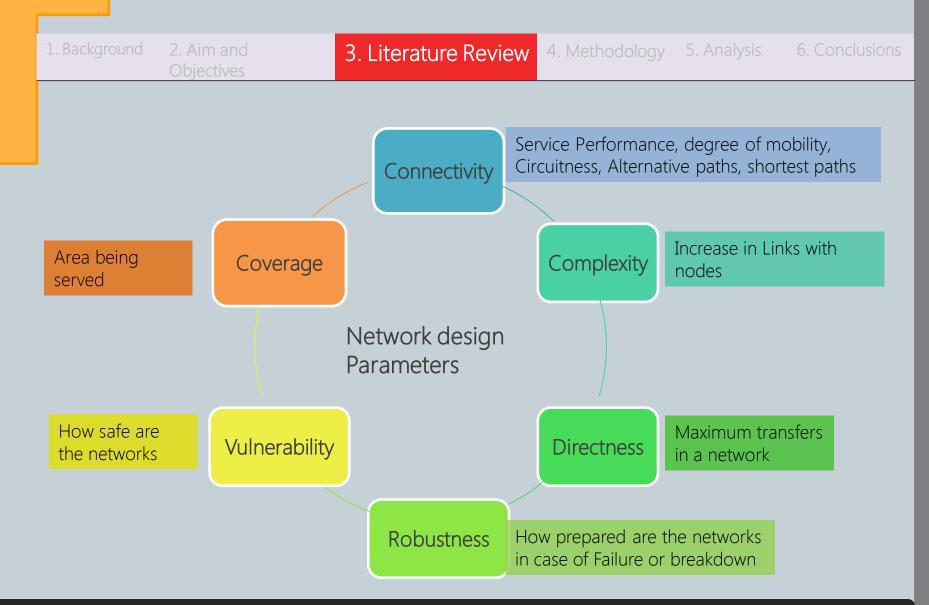
- Understand Transit Line Type and Network patterns.
- Study their Network Characteristics

2. To draw lessons from Network design Parameters and their Indicators for different cities.

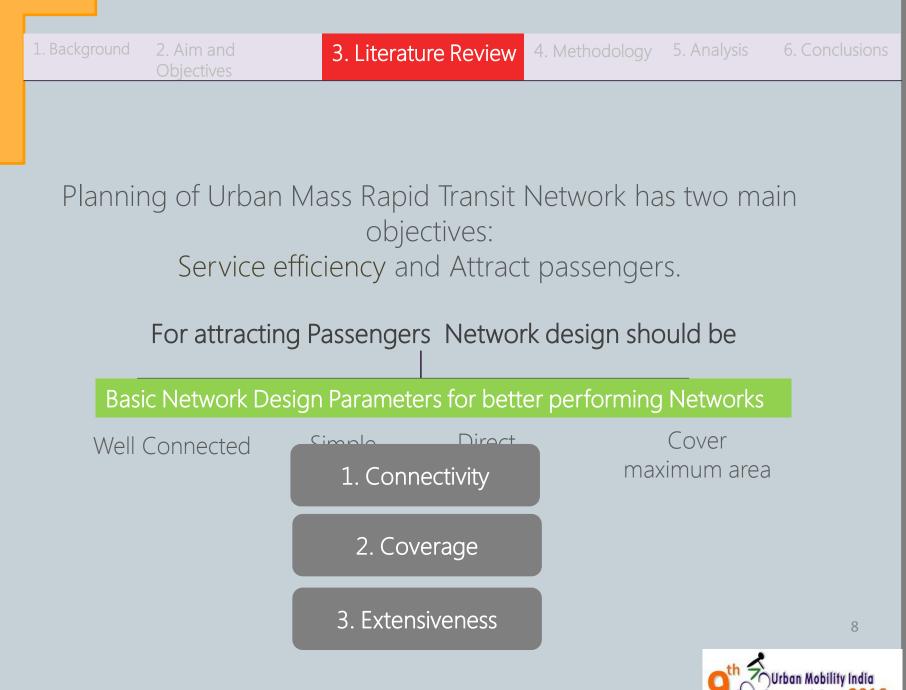
• Comparative analysis of network design parameters for case cities across the world.

3. To assess Network design Parameters of proposed networks for Indian cities.

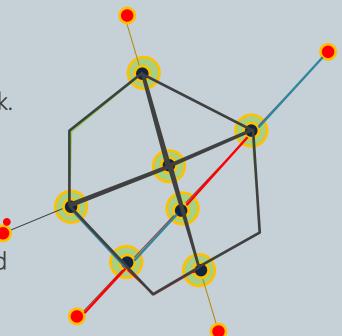
 Analyze network design parameters of proposed networks of Indian cities (Delhi, Mumbai and Bengaluru)



What do these Indicators reflect?


They reflect upon the Network design Parameters and Performance

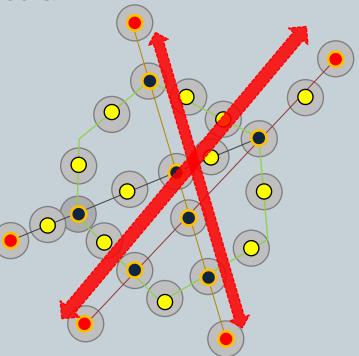
It becomes crucial to understand what these parameters mean.

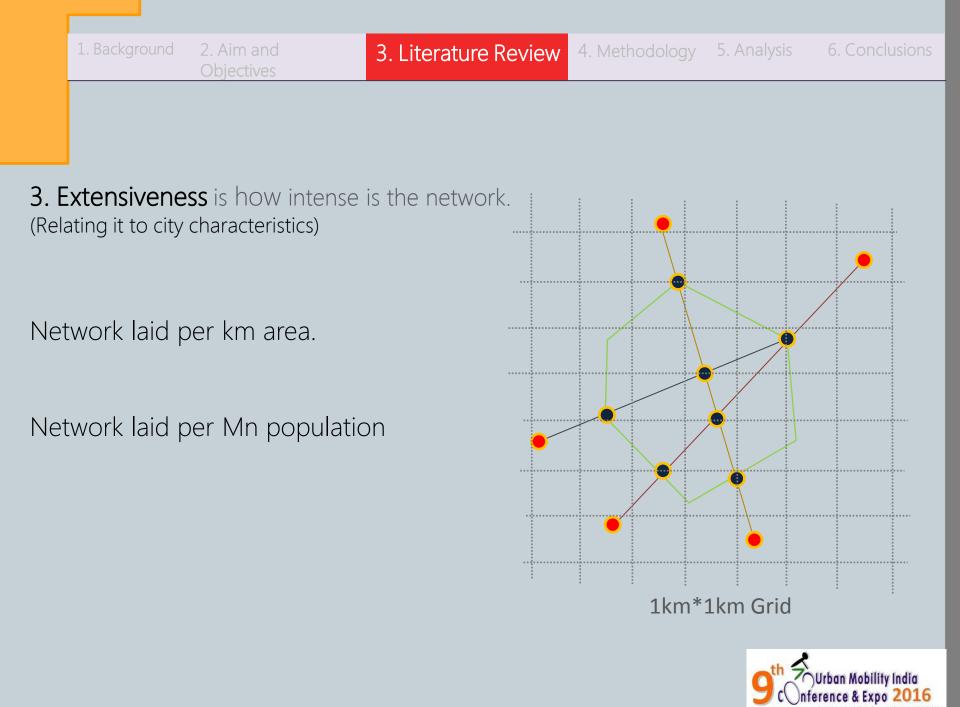


Adapted from various sources

1. Connectivity is the ease with which passengers can travel within a network.

This can be when;


- 1. There are alternate paths to move in the network.
- 2. More nodes and links.
- 3. Transfers available in the network.
- 4. Network structure is has paths that start and end at the same node (circuits).
- 5. Proximity of a node



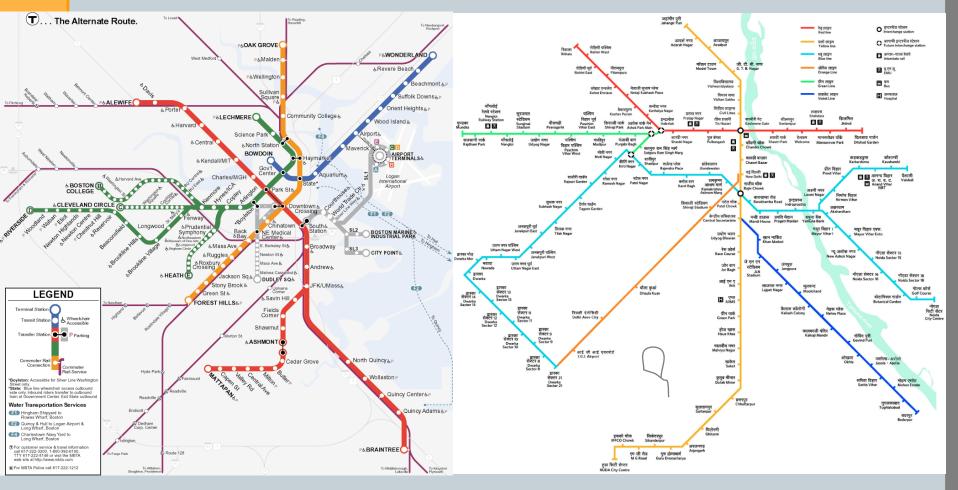
- 2. Coverage is how accessible is the network to public.
 - 1. Area served by the network.
 - 2. Extent of the network

	1. Backgro	ound 2. Aim and Objectives	3. Literatur	re Rev	iew 4. Met	hodology 5.	Analysis 6	5. Conclusions
	Network Measure	Indicates	Researcher		Network Measure	Indicates		Researcher
1.	Average Interstation Spacing	 Good Coverage (less value) High operating s Coverage (larger values) 	Kansky,(1962-64)	11.	Cyclomatic No.	 Indicates the of Network 	Complexity	Kansky,(1962-64)
2.	Line Overlapping		Gattuso & Miriello, 2005	12.	Net network Length	 Network len overlapping 	gth without In Coverage	Gattuso & Miriello, 2005
3.	Beta Index	 Value increases with increase in Nodes and LiConnectivity 	Kansky (1962-64)	13.	Network Density Connected			
4.	Alpha Index	• Existing circuits to possible (Gattuso & Miriello, 2005	14. 15.	Node Ratio Percent 4 way			
5.	Gamma Index	Relation Between observed k and possible Links	Kansky (1962-64)	15.	intersections		Complexity	
6.	Detour Index	 Straight distance/ Transport k Distance 		16.	Intersection Density			
7.	Pi Index	Coverage	(ansky (1962-64)	17.	Block Density	• No. of Cen		Cervero, 1995- 97
8	Shimbel Index	 Shortest distance between S Connectivity 	Shimbel	18	Network Weight	• No. of Cond	Connectivity	Gattuso & <u>Miriello, 2005</u>
9	Eta Index	Average length /LCoverage	Kansky (1962-64)	19	Network Loop	• Links – Node	 Complexity 	Gattuso &
10	Theta Index	 Average amount of Traffic/ k Intersection 	Kansky (1962-64)	20	Network Length	Total Networ	Coverage	Gattuso & Miriello, 2005

1. Background 2. Aim Object		rature Review 4. Methodolo	ogy 5. Analysis 6. Conclusions
Network Design Parameter	Indicators	Description	Norm
Connectivity (ability to move with ease)	1. Alpha Index	Existing Circuits / maximum possible circuits in the network	Value ranges from 0 to1
	2. Gamma Index	Existing paths/ maximum possible paths	Value ranges from 0 to1
	3. Beta Index	Link/node	Value is 0 for networks with no circuits.
	4. Degree of Transfer	Net transfer possibility per station / Transfer nodes	Value is 1 for networks that have nodes with possibility of 1
	5. Eta Index	Average Link length	Varies as per transit line lengths
Coverage (catchment area)	1. Transit Coverage Area	Area being served by the transit stations/ Urban area	Varies as per the no. of stations
	2. Average Interstation spacing	Extent of the networks	Varies as per different cities.
	3. Average Line lengths		
Extensiveness (Intensity of the network)	1.Network density 2. Network pop. Density	Km of network/ km area Network/population	Varies with different cities of similar sizes.

1. Background 2. Aim and Objectives	3. Literature Review 4. Methodology	5. Analysis 6. Conclusions
 Principles of Graph Theory Application to Public Transport sector. Transit line type and network 	1. Literature Review	1. Suitable indicators to
	2. Identification of suitable Indicators	evaluate Network design parameters.
	3. Process	
 Data Collection Transit maps Converting maps to Planar graphs 	Understanding layout of Transit Line and pattern of the Network formed.	Computation of Indices
	4.Comparative Analysis	
	5. Conclusions	
Concentual Framework		

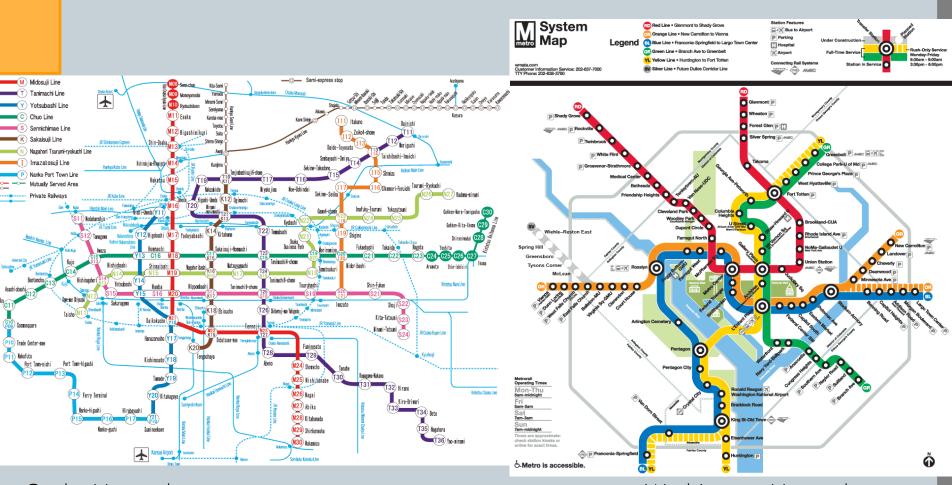
S.no.	Туре	Description
1.	Radial Networks (with or without branches)	
2.	Radial Circumferential Networks	 Consists of Radial, Diametrical, ring lines. Typically serves busy corridors and many sub-centres. Intersection creates transfer points and covers non-CBD trips as well. Have greater coverage.
3.	Rectangular / Grid Networks	 Transit lines follow geometric pattern. Cities with uniform density. Provides uniform coverage.
4.	Ubiquitous Networks	 Service in all high demand corridors. Good connectivity amongst transit lines requiring maximum one transfer. Adequate coverage throughout the urban area. Good connections to non-CBD oriented trips as well.
(adapte	ed from Vuchic,2005)	To understand layout of Transit network pattern of the Network.



1st Objective: To Review networks of different cities

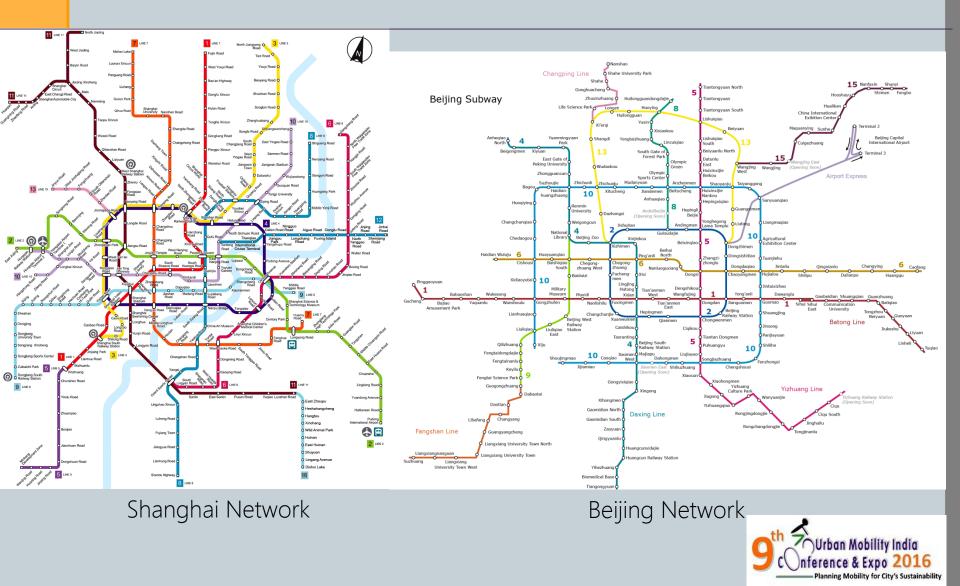
• Understand line type and pattern

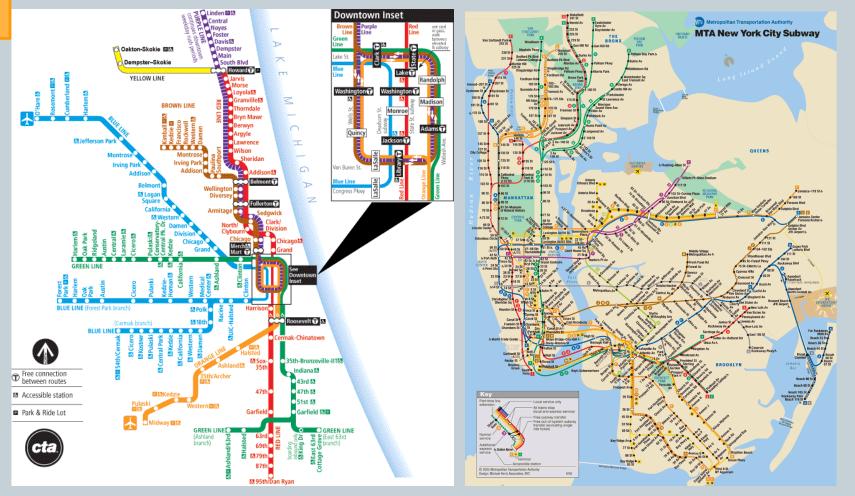
6. Conclusions



Boston Network

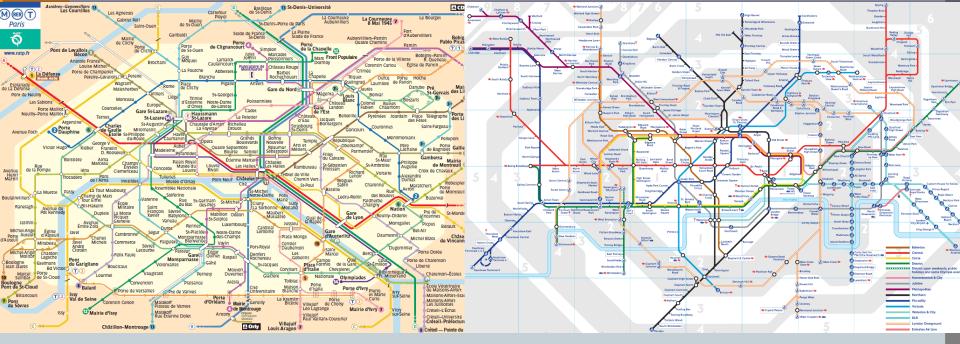
Delhi Network


6. Conclusions


Washington Network

Osaka Network

6. Conclusions



New York Network

Chicago Network

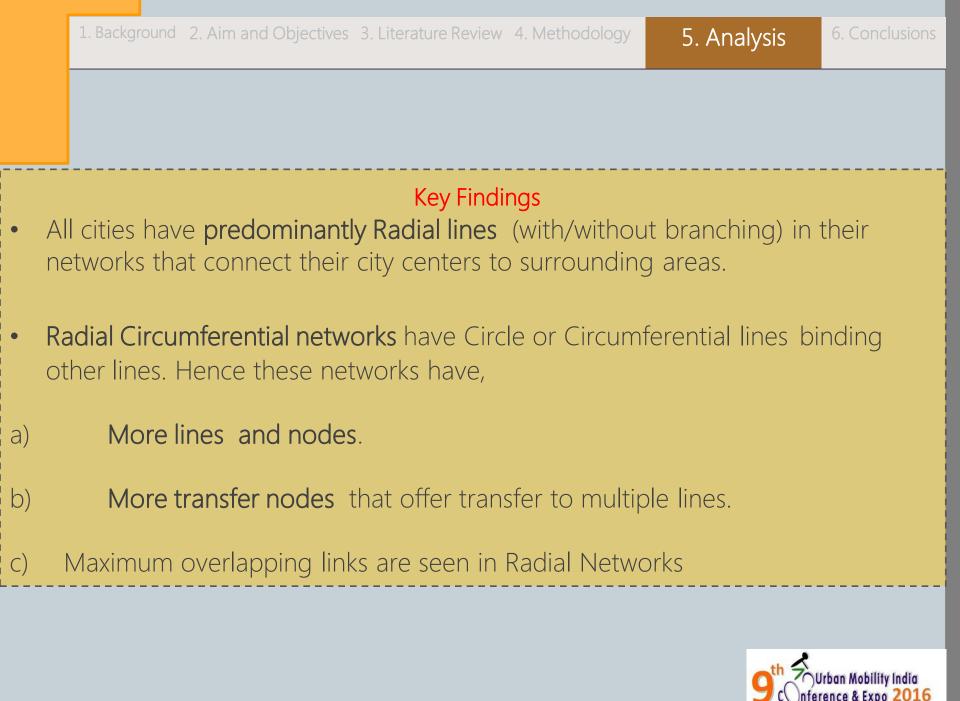
6. Conclusions

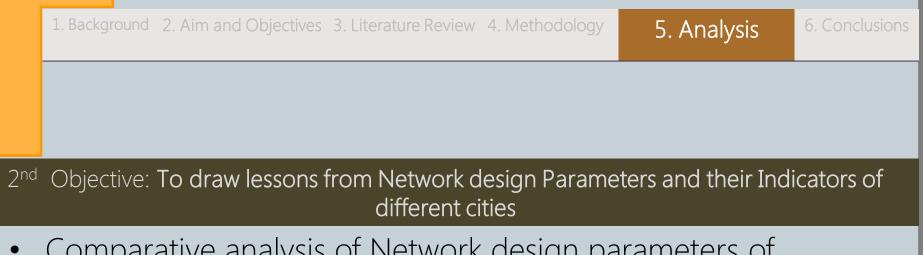
Paris Network

London Network

	City	No. of Lines (q)	Total Line Length (km)	Stations N _s	Radial	Diametrical	Tangential	Circumferential	Circle	Loop	Network
1	Paris	16	214	303	7	5	1	2	0	1	U
2	Beijing	16	442	262	6	3	4	2	1	0	RC
3	London	16	488	353	10	5	0	0	1	0	RC
4	Shanghai	12	533	284	6	4	1	1	0	0	RC
5	Singapore	5	152.9	95	2	1	0	2	0	0	RC
6	Chicago	8	165.5	145	0	3	1	0	0	4	R
7	Bengaluru*	2	42.3	40	2	0	0	0	0	0	R
8	Beunos Aires	6	51.4	83	6	0	0	0	0	0	R
9	Boston	6	103	117	4	2	0	0	0	0	R
10	Cairo	3	77.9	61	3	0	0	0	0	0	R
11	Delhi	7	196.15	143	3	3	0	0	0	1	R
12	Gangzhou	9	256.4	142	7	2	0	0	0	0	R
13	Honk kong	10	212.9	154	9	0	1	0	0	0	R
14	Milan	4	94.5	103	2	2	0	0	0	0	R
15	Mumbai	7	235	95	7	0	0	0	0	0	R
16	NewYork	9	368.05	422	7	2	0	0	0	0	R
17	Osaka	9	125.42	121	8	0	1	0	0	0	R
18	Prague	3	59.4	57	0	3	0	0	0	0	R
19	Tehran	5	152	89	2	3	0	0	0	0	R
20	Washington	6	188	91	1	4	0	1	0	0	R

Bengaluru* As per phase-1 network


1st Objective: To Review networks of different cities


Understand Network characteristics

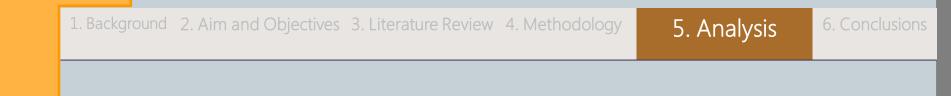
								No	o. of n	odes I	Hosting	Lines				
S.No.	City	Total Line Length	Stations Ns	Lines q	Nodes N	End N _e	Transfer N _t	2	3	4	5	6	A (Links)	As	Am	Network
1	Beijing	442			64	17	47	44	3	0	0	0	94	94	0	RC
2	Bengaluru *	42.3			5	4	1	1	0	0	0	0	4	4	0	R
3	Beunos Aires	51.4			18	11	7	7	0	0	0	0	19	19	0	R
4	Boston	103			29	16	13	10	3	0	0	0	32	31	1	R
5	Cairo	77.9	61	3	12	6	6	6	0	0	0	0	14	14	0	R
6	Chicago	165.5	145	8	35	11	24	11	4	4	4	(1)	57	36	21	R
7	Delhi	196.15	143	7	19	9	10	10	0	0	0	0	22	22	0	R
8	Guangzhou	256.4	142	9	32	11	21	21	0	0	0	0	44	44	0	R
9	Honk Kong	212.9	154	10	31	12	19	18	1	0	0	2	35	29	6	R
10	London	488	353	16	86	24	62	38	14	8	1		162	124	38	RC
11	Milan	94.5	103	4	16	10	6	6	0	0	0	0	18	18	0	R
12	Mumbai	235	95	7	38	4	34	28	5	1	0	0	41	12	29	R
13	NewYork	368.05	422	9	73	26	47	33	7	5	2	0	130	109	21	R
14	Osaka	125.42	121	9	35	11	24	21	3	0	0	0	47	45	2	R
15	Paris	214	303	16	104	42	62	45	13	4	3	(1)	178	178	0	U
16	Prague	59.4	57	3	9	6	3	3	0	0	0	0	9	9	0	R
17	Shanghai	533	284	12	51	17	34	24	9	1	0	0	74	65	9	RC
18	Singapore	152.9	95	5	20	4	16	15	1	0	0	0	30	28	2	RC
19	Tehran	152	89	5	19	9	10	10	0	0	0	0	22	22	0	R
20	Washington	188	91	6	51	7	44	40	3	1	0	0	52	11	41	R

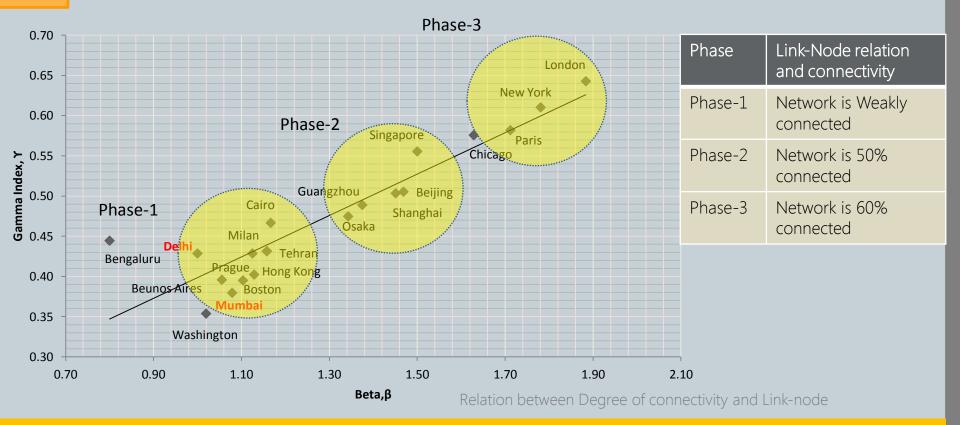
 Comparative analysis of Network design parameters of cities across the world.

													T	
			Connectivity				Coverage		Exten	nsiveness				
City	Alpha α	Gamma Y	Degree of Transfer Nodes p	Beta β	Eta Index	Area Served	Avg. Line Length	Avg. Interstation Spacing	Network/Km ²	Network /Mn Population	· ·	Footprint	Annual Ridership (Mn)	Daily Ridership
1 Beijing	0.252	0.51	1.06	1.5	5.6	0.110	27.6	1.7	0.282	27.8	15.9	1869	2460	9.11
2 Bengaluru	0.000	0.44	1.00	0.8	10.6	0.031	21.2	1.1	0.042	5.0	8.5	1012	0.147	0.00
3 Beunos Aires	0.065	0.40	1.00	1.1	2.7	0.078	8.6	0.6	0.062	6.3	8.1	832	308	1.14
4 Boston	0.075	0.40	1.15	1.1	3.2	0.029	17.2	0.9	0.033	40.8	2.5	3158	147	0.54
5 Cairo	0.158	0.47	1.00	1.2	5.6	0.043	26.0	1.3	0.069	6.7	11.7	1125	837	3.10
6 Chicago	0.354	0.58	1.29	1.6	2.9	0.057	20.7	1.1	0.083	28.2	5.9	1986	222	0.82
7 Delhi	0.121	0.43	1.00	1.2	8.9	0.067	28.0	1.4	0.118	10.0	19.5	1667	606	2.24
8 Gangzhou	0.220	0.49	1.00	1.4	5.6	0.033	28.5	1.8	0.076	19.0	13.5	3380	1825	6.76
9 Honk kong	0.088	0.40	0.74	1.1	6.1	0.453	21.3	1.4	0.797	30.2	7.1	267	1444	5.35
10 London	0.461	0.64	0.98	1.9	3.0	0.189	30.5	1.4	0.332	54.1	9.0	1470	1171	4.34
11 Milan	0.111	0.43	1.00	1.1	5.3	0.044	23.6	0.9	0.052	10.2	9.2	1828	328	1.21
12 Mumbai	0.056	0.38	0.35	1.1	5.7	0.088	33.6	2.5	0.277	11.4	20.6	850	2640	9.78
13 NewYork	0.411	0.61	1.04	1.8	2.8	0.142	40.9	0.9	0.158	25.8	14.3	2334	1655	6.13
14 Osaka	0.200	0.47	1.04	1.3	2.7	0.084	13.9	1.0	0.111	12.7	9.8	1128	836	3.10
15 Paris	0.369	0.58	1.61	1.7	1.2	0.233	13.4	0.7	0.210	33.7	6.4	1020	1524	5.64
16 Prague	0.077	0.43	1.00	1.0	6.6	0.125	19.8	1.0	0.165	46.5	1.3	359	530	
17 Shanghai	0.247	0.50	1.06	1.5	7.3	0.063	44.4	1.9	0.150	24.2	22.0	3611	2276	8.43
18 Singapore	0.314	0.56	0.94	1.5	5.1	0.236	30.6	1.6	0.484	55.1	2.8	316	794	2.94
19 Tehran	0.121	0.43	1.00	1.2	6.9	0.033	30.4	1.7	0.072	14.4	10.6	2112	480	1.78
20 Washington	0.021	0.35	0.18	1.0	3.6	0.025	31.3	2.1	0.065	77.8	2.4	2888	218	0.81

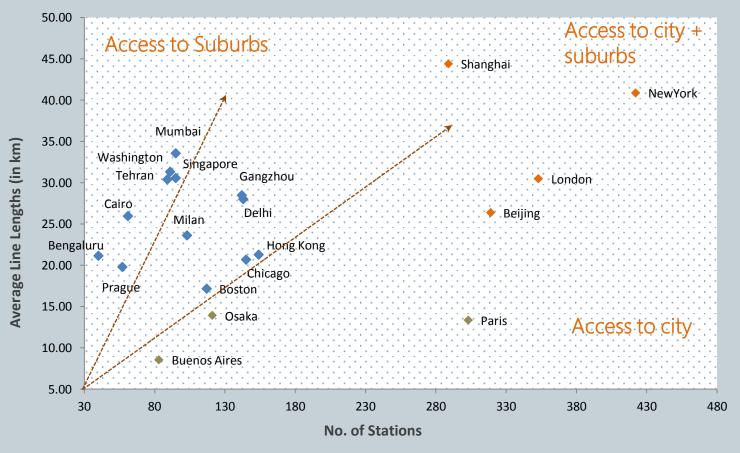
Network Design Indicators

Population and Urban Footprint Data source: Demographia World Urban Area, 11th edition_ Jan 2015 Annual Ridership Data source: World metro database and other compiled sources.




1. Background 2. Ai	m and Objectives 3. Litera	ture Review 4. Methodolo	^{gy} 5. Analysis	6. Conclusions
	Design Parameter			
Strong co-Relation			Ridership increa parameter is im	
Weak Relation			Ridership is less af design paramete improves the net	er but still it

1. Background 2. A	im and Objectives 3. Literature Review 4. Methodol	logy 5. Analysis ^{6.} Conclusions
	Design Parameter and Ridership (Performance)	R ²
	1. Alpha Index – Completeness	0.81
Strong co-Relation	2. Gamma Index– Alternate paths	0.81
	3. Beta Index - Link –Node ratio	0.67
	4. Area Served- No. of Stations	0.64
	5. Network Density- Network laid/km	0.71
Weak Relation	1. Degree of transfer Nodes- Transfer possibilities per station	
	2. Eta -Index Length of the Link	
	3. Network laid per Mn pop.	


Indian cities fall in phase one with low connectivity level.

Relation between Average interstation spacing and Average Line lengths

Relation between Average interstation spacing and Average Line lengths

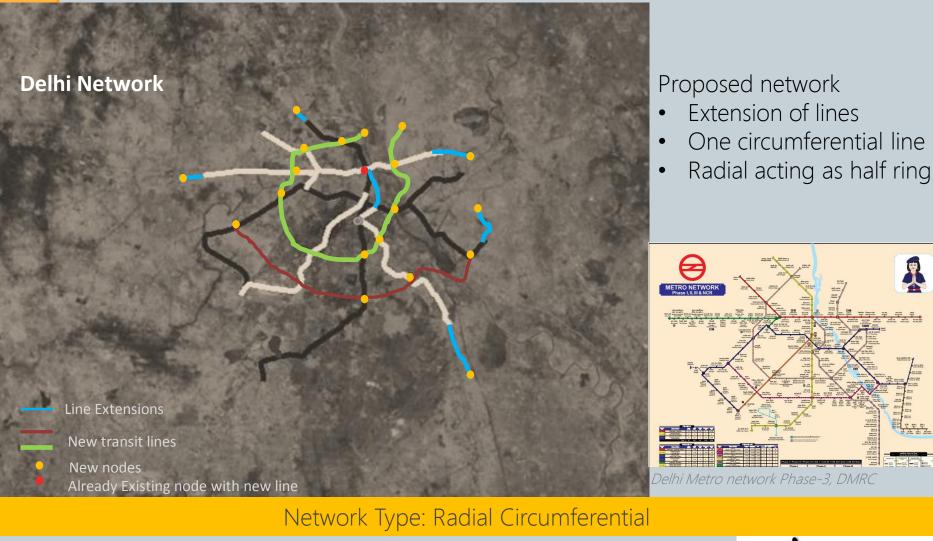
Existing networks of Indian cities provide access to city center for people living in suburbs

Ri	Ridership	and Coverage	ors	
Alpha		Area served	Beta	Eta
London, Paris, Singa	Cities that hold relation	London, Paris, Singapore,	Paris, New York, Shanghai	Shanghai, Guangzhou, Beijing, Osaka
End Nodes are I leading to a mon complete netwo		High number of stations and Low interstation spacing	More number of intersecting lines	
Mumbai, Chinese ci [.] HK	Outliers	Mumbai, New York (Possibly because of Overlapping lines)	Beijing, Chicago, Mumbai, HK	London, New York, Paris
60%	Sample Size	75%	70%	55%
0.81	R ²	0.64	0.67	0.66
	Alpha London, Paris, Singa End Nodes are l leading to a mo complete netwo Mumbai, Chinese cir HK 60%	AlphaLondon, Paris, SingaCities that hold relationEnd Nodes are leading to a mo complete netwoPossible ReasonMumbai, Chinese cit HK60%Sample Size	AlphaArea servedLondon, Paris, SingaCities that hold relationLondon, Paris, Singapore,End Nodes are leading to a mo complete netwoPossible ReasonHigh number of stations and Low interstation spacingMumbai, Chinese cir HKOutliersMumbai, New York (Possibly because of Overlapping lines)60%Sample Size75%	AlphaArea servedBetaLondon, Paris, SingaCities that hold relationLondon, Paris, Singapore,Paris, New York, ShanghaiEnd Nodes are I leading to a mo complete netwoPossible ReasonHigh number of stations and Low interstation spacingMore number of intersecting linesMumbai, Chinese ci HKOutliersMumbai, New York (Possibly because of Overlapping lines)Beijing, Chicago, Mumbai, HK60%Sample Size75%70%

Key Findings

- Network analysis of various cities can be done on parameters of Connectivity, Coverage and Extensiveness.
- Strong Co-relation exists between few Network design Indicators and Ridership.
- Hence, improving the network design indicators wil help increase ridership.
- Connectivity can be increased by :
 - Increasing the link to node ratio (networks can achieve 66 % connected level)
- II. Increasing the Transfer nodes that provide transfer to multiple lines.
- III. Reducing the average link length. (Increasing proximity of a node)

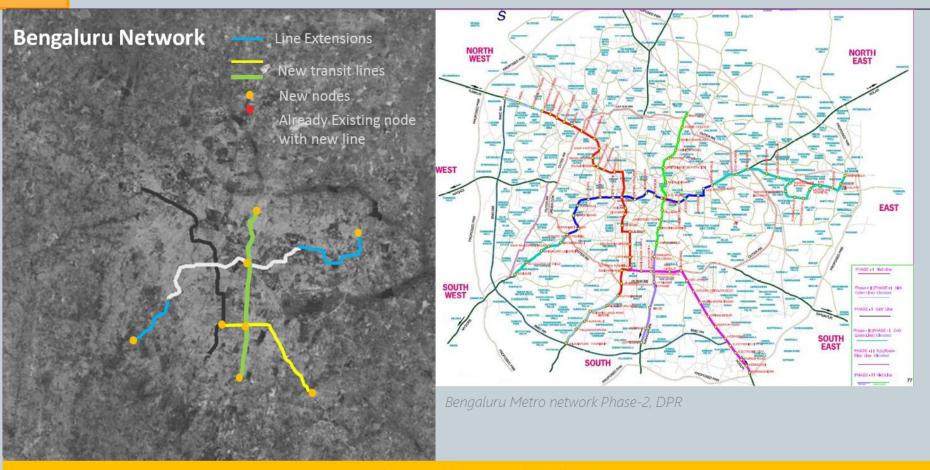
- **Coverage** of the network increases with increasing number of stations and reducing interstation spacing.
- Networks can expand adopting any of the 3 broad categories: Access to public, Access to suburbs, Access to both.
- Extensiveness of the network can be improved by:
- Laying more of Transit lines will result in more Network density.


3rd Objective: To assess Network design of proposed UMRT networks for Indian cities.

• Analyze network design parameters of proposed networks of Indian cities (Delhi, Mumbai and Bengaluru)

For selected Indian case cities

- How have the Network pattern and design indicators changed?
- Is their any improvement?
- How design parameters can be improved?

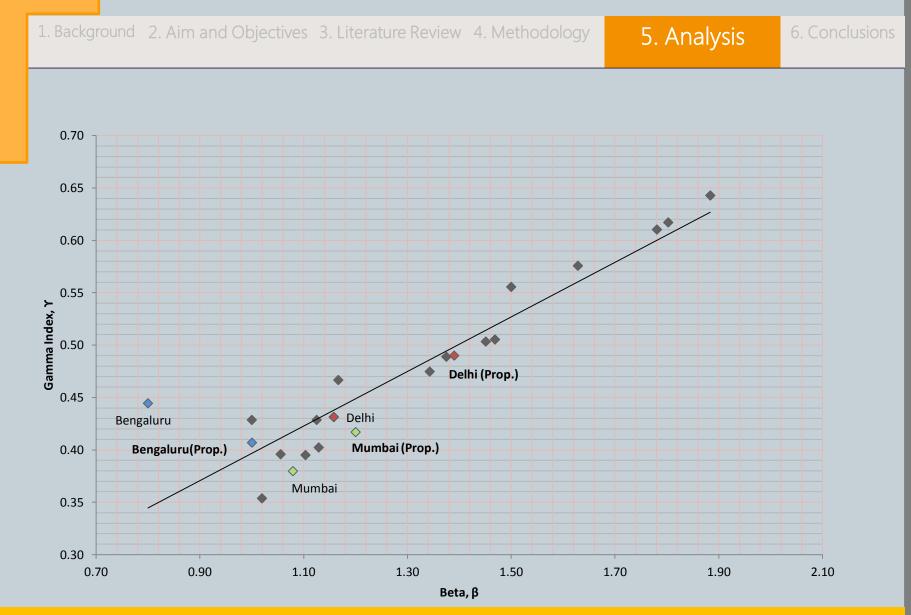


6. Conclusions

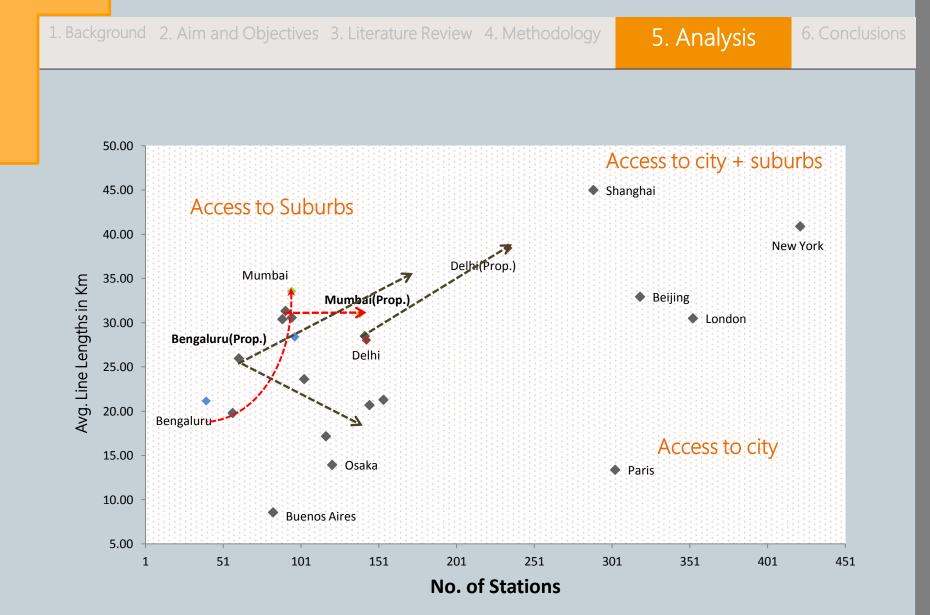
Network Type: Predominantly Radial

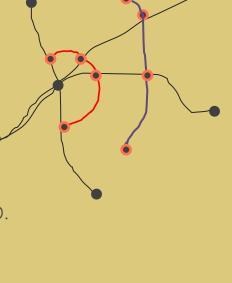
Network Type: Radial

								No	No. of Nodes hosting lines						
City	Urban Footprint area	No. of Transit Lines	Total Line Length	No. Of Stations	Nodes	End Nodes	Transfer Nodes	2	ŝ	4	5	6	Links	Single Links	Multiple Links
Delhi (Prop.)	1667	9	347	234	36	12	24	23	1	0	0	0	50	49	1
Delhi	1667	7	196.15	143	19	9	10	10	0	0	0	0	22	22	0
Mumbai (Prop.)	850	9	279.4	139	46	7	39	32	4	3	0	0	55	25	29
Mumbai	850	7	235	95	38	4	34	28	5	1	0	0	41	12	29
Bengaluru (Prop.)	1012	4	113.5	97	11	7	4	4	0	0	0	0	11	11	0
Bengaluru	1012	2	42.3	40	5	7	4	4	0	0	0	0	4	4	0


Network Characteristics of Proposed networks

	Connectivity Coverage Ex								
			Degree of Transfer				Avg. Line	Avg. Interstation	
City	Alpha α	Gamma Y	Nodes	Beta β	Eta Index	Area Served	Length	Spacing	Network/Km2
Delhi (Prop.)	0.22	0.49	1.0	1.39	6.94	0.110	38.6	1.48	0.208
Delhi	0.12	0.43	1.00	1.16	8.92	0.067	28.0	1.37	0.118
Mumbai (Prop.)	0.13	0.42	0.51	1.22	4.98	0.128	31.0	2.01	0.328
Mumbai	0.06	0.38	0.35	1.08	5.73	0.088	33.6	2.47	0.277
Bengaluru									
(Prop.)	0.06	0.41	1.0	1.0	10.31	0.075	28.4	1.17	0.112
Bengaluru	0	0.44	1.0	0.8	10.575	0.031	21.15	1.06	0.042


Network Design Indicators


Connectivity levels have increased in the Proposed networks

- Indian cities can improve their connectivity levels by: What are the possible ways in which Indian cities can improve their networks?
- I. Introducing more transit lines .This will improve the link node ratio also the network density.
- By binding the radials with circumferential lines or circle lines.
- By introducing lines that reduce the link lengths.
- Having more stations with reduced interstation spacing.
- All these improvements will have positive implications on Ridership.

- Network based approach proves significant in analyzing Network design of the urban mass rapid transit networks for cities with varying metropolitan backgrounds.
- With the comparative analysis cities can draw lessons on the Network design parameters and adopt them for their network building.

