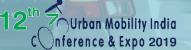


GOVERNMENT OF INDIA MINISTRY OF HOUSING AND URBAN AFFAIRS

Modelling Dwell time Variation for the City Bus Transport System of Surat City

Nandan H. Dawda Sardar Vallabhbhai National Institute of Technology, Surat.

MyFreePPT.com - Graphics b

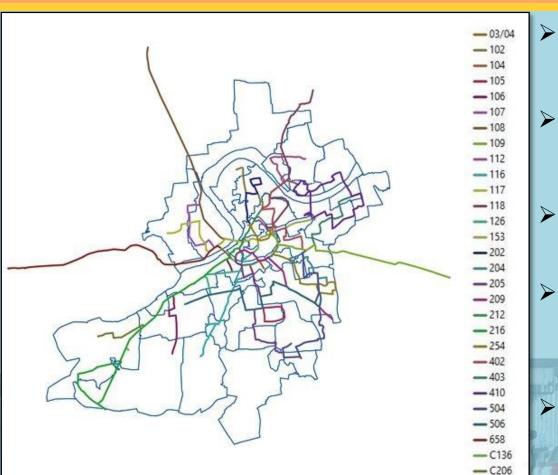

INTRODUCTION

LITERATURE REVIEW **STUDY AREA & DATA COLLECTION DWELL TIME DISTRIBUTION DWELL TIME MODELLING SENSITIVITY ANALYSIS FINDINGS & CONCLUSION** REFERENCES

DWELL TIME

DEFINATION

• SIGNIFICANCE

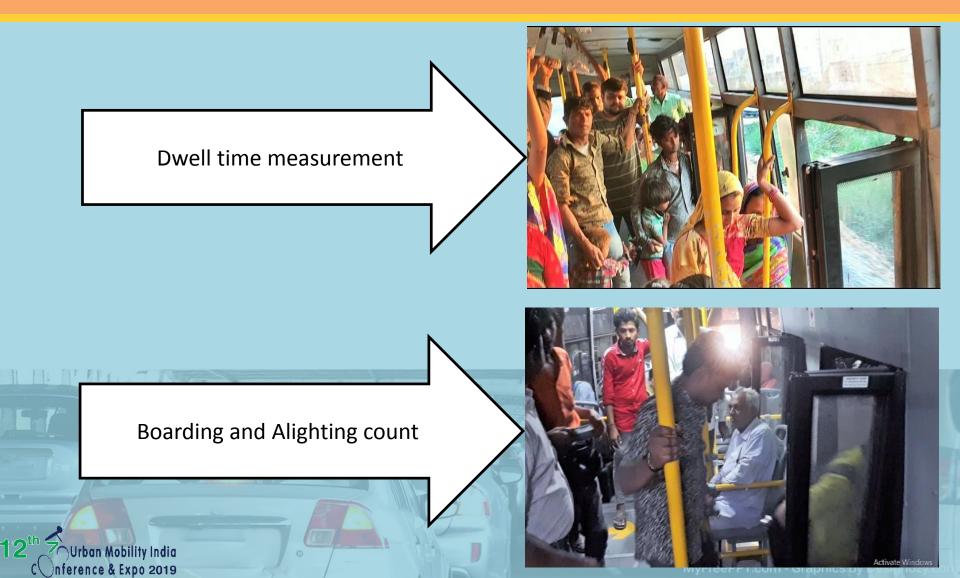

LITERATURE REVIEW

Sr no	Author	Influencing factor	Method	
1	Levinson, H. S. (1983)	 Total number of boarding & alighting passenger 	Linear regression model	
2	Guenthner (1983)	• Total boarding and alighting	Natural logarithmic model	
3	(Lam, Cheung, 1999)	• Effect of crowding conditions on dwell time	Linear regression model	
4	Rajbhandari (2003)	Passenger boarding & alightingStandee inside bus	Linear regression model	
5	(Bertini <i>,</i> R. L. 2004)	Passenger boarding & alighting	Ordinary least square	
6	(Dueker et al. 2004)	 Passenger boarding & alighting, On time performance friction at bus stop 	Multi linear regression	
7	Kittelson and Associates (2005)	Boarding and alighting	multivariate linear regression model	
8	(Zhang, Baoming, and Dewei 2008)	• Passenger alighting and boarding behaviour	cellular automata-based micro-simulation model	
9	(El-Geneidy and Vijayakumar 2011)	 Passenger boarding & alighting, times of day, bus type, passenger load, weather condition 	Linear regression	
10	(Tirachini, A., Hensher, D.A., Rose 2013)	 Payment methods, The existence of steps at doors, Age of passengers Possible friction between users boarding, alighting and standing 	multiple regression models	

 12^{th}

STUDY AREA

- One of the fastest growing cities, \geq Surat is selected for study.
- \geq Population : 4.5 million (Source: census 2011)


Area of city : 326.5 km2

Presently, 238 buses are running on 37 different routes (28 routes of City bus and 9 routes of BRTS) routes.

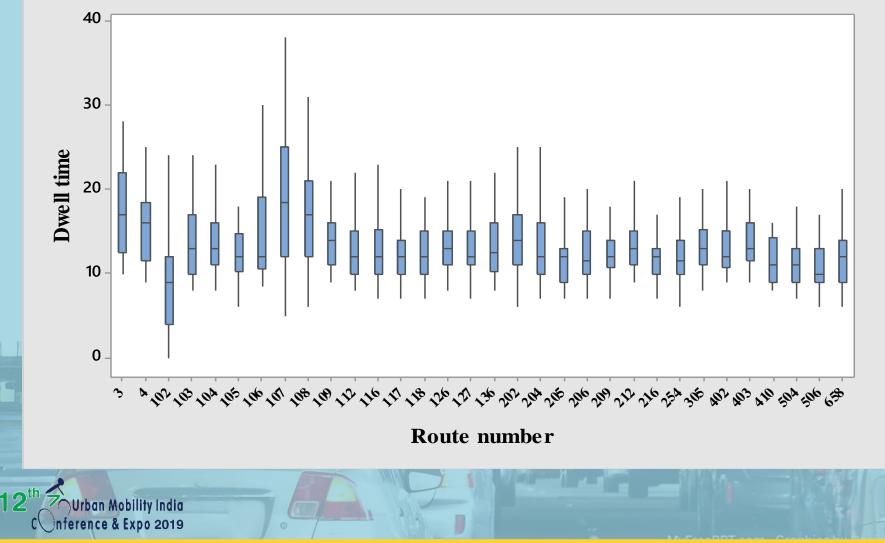
The city bus has capacity of 32 seats per bus (24 seating and 08 standee).

Urban Mobility India nference & Expo 2019

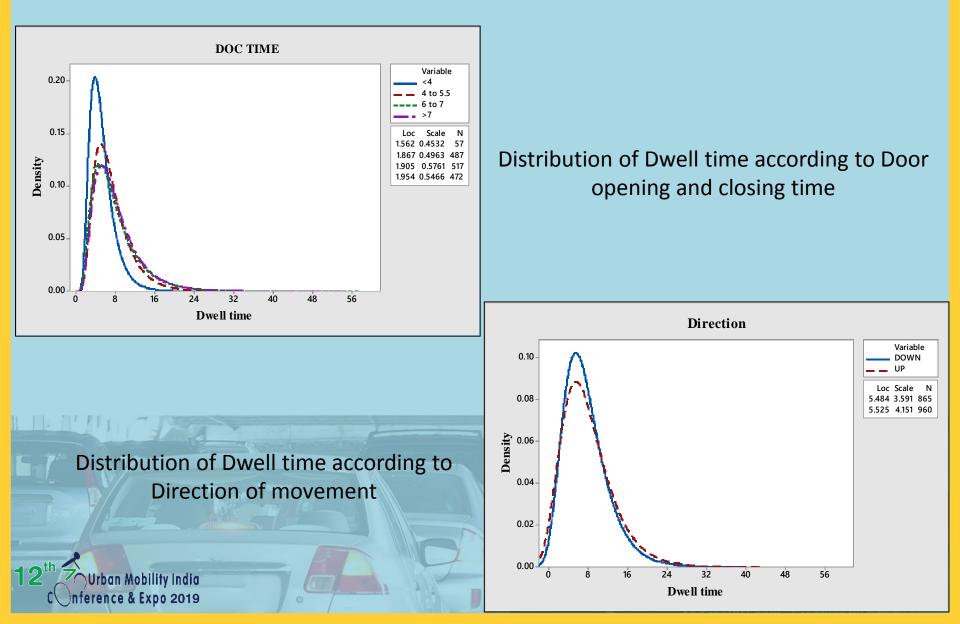
DATA COLLECTION

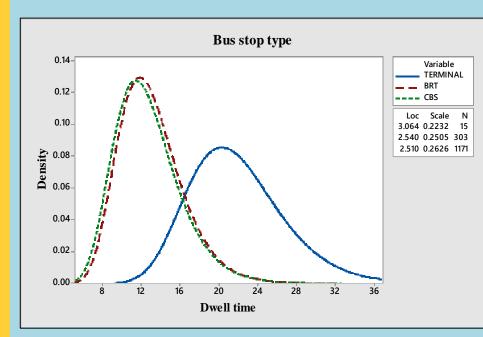
SUMMARY OF P STATISTICS VALUE FOR DWELL TIME DISTRIBUTION

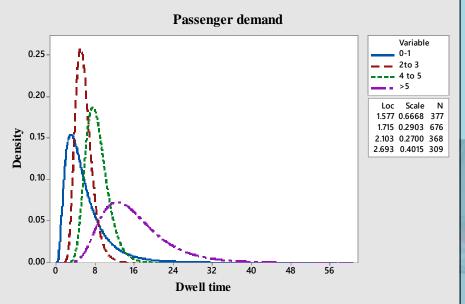
		Log normal	Normal	Weibull
Direction	Up	0.17487	0.21188	0.18434
Direction	Down	0.16925	0.21752	0.18233
	0-1	0.27347	0.28535	0.27443
Passenger Demand	2-3	0.22405	0.29152	0.28913
(Persons)	4-5	0.1864	0.25111	0.24162
	>5	0.10168	0.14498	0.15882
Time of the day	Morning	0.09426	0.13934	0.13963
	Evening	0.13284	0.18359	0.19393
	<4	0.31746	0.35522	0.61745
	4-5.5	0.12867	0.20687	0.1477
Time for door opening	6-7	0.16675	0.22356	0.18015
& closing(Sec.)	>7	0.14323	0.21024	0.20506

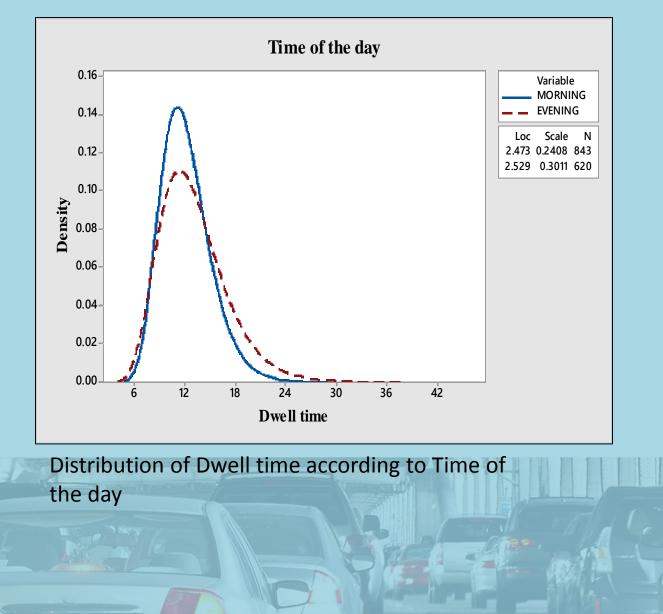

OUrban Mobility India

2th


Using K-S test in Easy fit software


DWELL TIME VARIATION ON EACH ROUTE


DISTRIBUTION OF INDEPENDENT VARIABLES OF MODEL



Distribution of Dwell time according to Bus stop type

12thOurban Mobility India

LOG LINEAR REGRESSION AND MODEL SUMMARY

C nference & Expo 2019

	Coefficients	Standard Error	T-Stat	P-value					
Intercept	1.6507	0.0284	58.190	0					
D.O.C.	0.0761	0.0027	27.802	3.05E-137					
Direction	0.0310	0.0067	4.6464	3.67E-06					
В	0.0956	0.0016	58.29	0					
Α	0.1023	0.0022	46.777	4.6E-294					
Crowding inside bus	0.0011	0.0005	2.1012	0.0358					
Time of day	0.0285	0.0065	4.3926	1.19E-05					
BST	0.0138	0.0075	1.8471	0.05014					
	Model summary								
	0.89202								
	R Square								
	0.79473								
	0.12036								
	1489								
th Urban Mobility India									

DWELL TIME MODEL

Ln(Dt)

 $= 1.6507 + (o.076 * X_1) + (o.031 * X_2) + (o.095 * X_3) + (o.102 * X_4) + (o.001 * X_5) + (o.028 * X_6) + (o.014 * X_7)$

Where,

X1= Time for opening and closing door (sec.)
X2= Direction of movement
X3= No. of passengers boarded (B)
X4= No. of passengers alighted (A)
X5= Crowding inside the bus
X6= Time of the day
X7= Bus stop type

EFFECT OF BOARDING AND ALIGHTING ON DWELL TIME

Dwell time variation

Bo	oarding (%)	Alighting (%)	Mean	Standard Error	Median	SD	Sample Variance	Range	Min.	Max.
	0-20	100-80	2.59	0.05	2.27	1.11	1.22	5.82	0.18	6.00
	21-40	79-60	2.01	0.04	2.00	0.59	0.35	4.67	1.00	5.67
	41-60	59-40	2.13	0.04	2.00	0.67	0.45	5.33	0.67	6.00
	61-80	39-20	1.98	0.04	2.00	0.54	0.29	4.09	0.91	5.00
8	81-100	19-0	2.51	0.05	2.17	1.00	1.01	5.83	0.7	6.00
2 th Urban Mobility India										

nference & Expo 2019

EFFECT OF OCCUPANCY ON DWELL TIME

Seats occupied(%)	Less than 50	50-100	More than 100
Passenger demand	2.11	2.54	3.03
Only Boarding	2.55	2.61	2.77
Only Alighting	2.59	2.84	3.33
Dwell time per passenger(Sec.)			

FINDINGS

- Log-normal distribution can be considered as best distribution for explaining variations in dwell times compared to other potential statistical distributions.
- Dwell time is significantly influenced by passenger demand (boarding and alighting), crowding inside the bus, time of the day, direction of travel, door opening and closing time and type of bus stops.
- For informal stop (Generally city bus stops), dwell time per passenger is lower compared to dedicated bus stops (BRT) and Terminal stops.
- As crowding inside the bus increases, passenger service time for alighting operation increases rapidly compared to passenger service time for boarding operations and a result dwell time increases.

2^{un} Urban Mobility India C nference & Expo 2019

- Bertini, R. L., and A. M. El-Geneidy. 2004. 'Modeling Transit Trip Time Using Archived Bus Dispatch System Data.' *Journal of Transportation Engineering*, 130 (1): 56–67. https://doi.org/10.1061%0A/(ASCE)0733-947X(2004)130:1(56).%0A.
- Christoforou, Z, E Chandakas, and I Kaparias. 2017. 'An Investigation of Dwell Time Patterns in Urban Public Transport Systems : The Case of the Nantes Tramway'. In 8TH International Congress on Transportation Research in Greece, 1–14.
- Dueker, Kenneth, Thomas Kimpel, James Strathman, and Steve Callas. 2004. 'Determinants of Bus Dwell Time'. *Journal of Public Transportation* 7 (1): 21–40. https://doi.org/10.5038/2375-0901.7.1.2.
- El-Geneidy, Ahmed M., and Nithya Vijayakumar. 2011. 'The Effects of Articulated Buses on Dwell and Running Times'. *Journal of Public Transportation* 14 (3): 63–86. https://doi.org/10.5038/2375-0901.14.3.4.
- Eng, J Civil Environ, Stephen A Arhin, Errol C Noel, Melissa Anderson, Lakeasha Williams, Asteway Ribbiso, and Regis Stinson. 2015. 'Civil & Environmental Engineering Predicting Dwell Time by Bus Stop Type and Time of the Day' 5 (5). https://doi.org/10.4172/2165-784X.1000189.
- Fernandez, R. 2010. "Modelling Public Transport Stops by Microscopic Simulation.' *Transportation Research Part C* 18 (6): 856–868.
- Glick, Travis B, and Miguel A Figliozzi. 2019. 'Analysis and Application of Log-Linear and Quantile Regression Models to Predict Bus Dwell Times'. <u>https://doi.org/10.1177/0361198119848701</u>.
- Guenthner, R., and K. Hamat. 1988. 'Transit Dwell Time under Complex Fare Structure.' *Journal of Transportation Engineering* 114 (3): 367-379.
- Isukapati, Isaac K, Gregory J Barlow, and Stephen F Smith. 2017. 'Analysis of Trends in Data on Transit Bus Dwell Times', no. January. <u>https://doi.org/10.3141/2619-07</u>.
- Jaiswal, Sumeet, Jonathan Bunker, and Luis Ferreira. 2008. 'Relating Bus Dwell Time and Platform Crowding at a Busway Station' 2008: 239–49.
- Ji, Yanjie, Liangpeng Gao, Dandan Chen, Xinwei Ma, and Ruochen Zhang. 2018. 'How Does a Static Measure in Fl Uence Passengers ' Boarding Behaviors and Bus Dwell Time ? Simulated Evidence from Nanjing Bus Stations' 110 (February): 13–25.

Ourban Mobility India

- Khoo, Hooi Ling. 2013. 'Statistical Modeling of Bus Dwell Time at Stops'.
- Lam, William H K, Chung-yu Cheung, and C F Lam. 1999. 'A Study of Crowding e €cts at the Hong Kong Light Rail Transit Stations' 33.
- Levine, J., and G. Torng. 1994. 'Dwell Time Effects of Low Floor Bus Design.' *Journal of Transportation Engineering*, 120 (6): 914-929.
- Levinson, H. S. 1983. 'Analyzing Transit Travel Time Performance.' *Transportation Research Record* 915: 1–6.
- Lin, T., and N. H. M. Wilson. 1992. 'Dwell Time Relationships for Light Rail Systems.' *Transportation Research Record* 1361: 287–95.
- Rajbhandari, R., Chien, S., Daniel, J., 2003. 2003. 'Estimation of Bus Dwell Times with Automatic Passenger Counter Information.' *Transport. Res. Rec.: J. Transport. Res. Board* 1841 (13): 120–127.
- Third Edition. Transportation Research Board, Washington, D.C. 2013. 'TCRP Report 165: Transit Capacity and Quality of Service Manual'.
- Tirachini, A., Hensher, D.A., Rose, J.M. 2013. 'Crowding in Public Transport Systems: Effects on Users, Operation and Implications for the Estimation of Demand.' *Transp. Res.* 53A,: 36–52.
- Vuchic, V.R., 2005. 2005. Urban Transit: Operations, Planning and Economics. NJ.: J. Wiley & Sons, Hoboken.
- Zhang, Qi, Han Baoming, and Li Dewei. 2008. 'Modeling and Simulation of Passenger Alighting and Boarding Movement in Beijing Metro Stations'. In

2thOurban Mobility India

A DEVELOPED COUNTRY IS NOT A PLACE WHERE THE POOR HAVE CARS, IT'S WHERE RICH RIDE PUBLIC TRANSPORTATION -MAYOR OF BOGOTAS

