

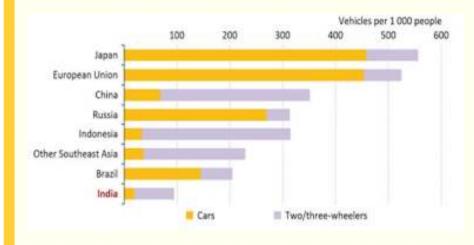
POTENTIAL OF ELECTRIC MOBILITY FOR GREEN MOBILITY ENVIRONMENT

Case Study Delhi

MADHUR KUKREJA, SPA DELHI

MOBILITY & ENVIRONMENT

PRESENTATION STRUCTURE

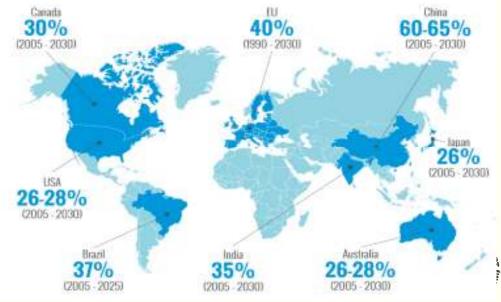

- Need of Electric Mobility
- Aim & Objective
- Basic Terminologies and Concepts
- Global Policy Approach
- Indian Policy Scenario
- Data Collection
- Scenario for Delhi
- EV User & Usage Scenario
- OEM's & Charging Ecosystem Providers
- EV Non User Mode Choice Modelling
- Impact of Electric Vehicles on the City

NEED OF ELECTRIC MOBILITY

MOTORIZATION TRENDS

The total number of vehicles registered in India has been 5.4 million, 11 million, 33 million, 40 million and 210 million in the years 1981, 1986, 1996, 2000 and 2015.

This indicates a 3500+ % growth in the total number of vehicles between 1981 and 2015.


EMISSION TARGETS

From 2006 to 2030, the global energy consumption is likely to rise by 53% and about three quarters of the projected increase in oil demand will come from transportation.

EMMISSION CUTS PROMISED BY RESPECTIVE COUNTRIES IN THEIR NATIONALLY DETERMINED CONTRIBUTION PLANS in COP21 (PARIS AGREEMENT 2015)

EMMISSION CUTS PROMISED BY RESPECTIVE COUNTRIES IN THEIR NATIONALLY DETERMINED CONTRIBUTION PLANS in COP21 (PARIS AGREEMENT 2015)

AIM

To assess the Potential of electric mobility for green mobility environment in India in the case study area of Delhi

OBJECTIVE

To **appreciate the concepts, features and technology of electric mobility** and its potential role in Indian cities.

To review global trends, policies and practices for implementation of Electric Mobility.

To **analyze the efforts (policies and ecosystem) for promoting EM** in Indian cities so far and identify the constraints for its targeted implementation

To assess the existing demand (user behavior), supply ecosystem and policy features of electric mobility in case study of Delhi

To assess and estimate the infrastructure, economics and ecosystem requirements for meeting potential and projected demand

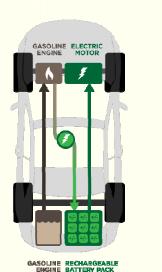
To **propose guidelines for accomplishing electric mobility in Delhi** and suggest appropriate bye - laws for its implementation

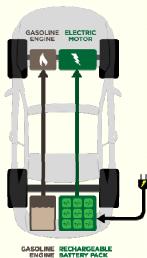
KEY CONCEPTS OF ELECTRIC MOBILITY

MAIN COMPONENTS

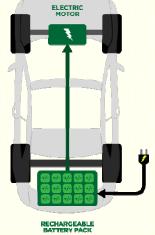
Hybrid (nonplug-in)

CHARGING INFRA


MOTORS

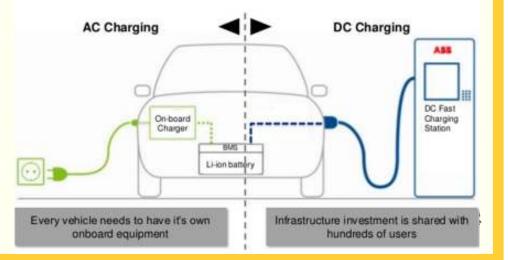


BATTERIES


has a relatively simple component architecture with the number of moving parts in the vehicle being less than 50 compared to over 500 parts in an IC engine powered vehicle

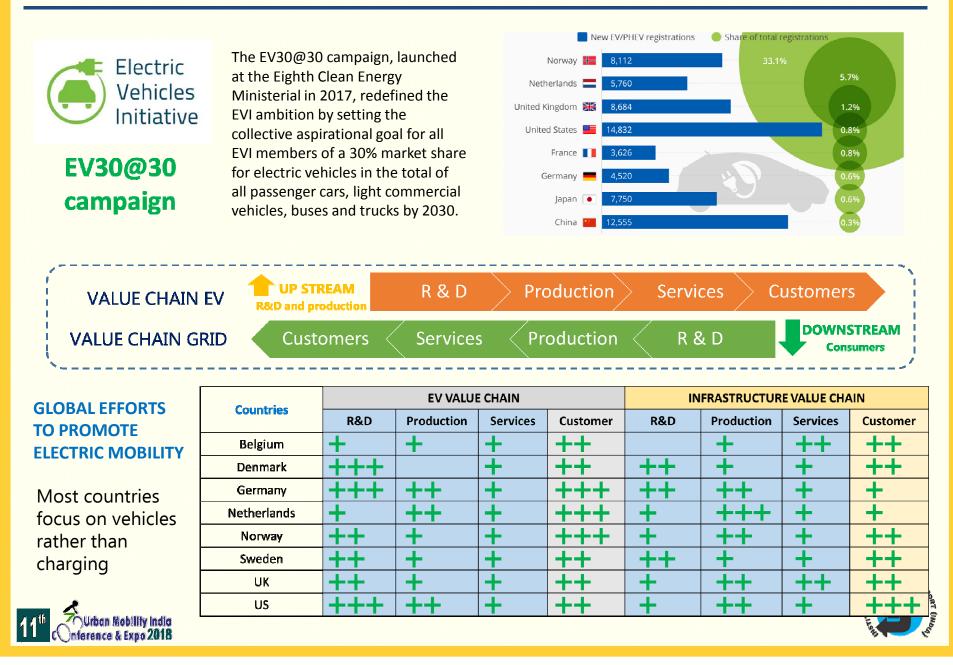
An Electric Vehicle

Plug-in Hybrid

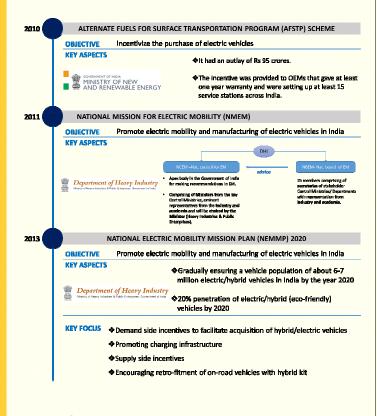


Battery Electric Vehicle (BEV)

CHARGING TECHNOLOGY

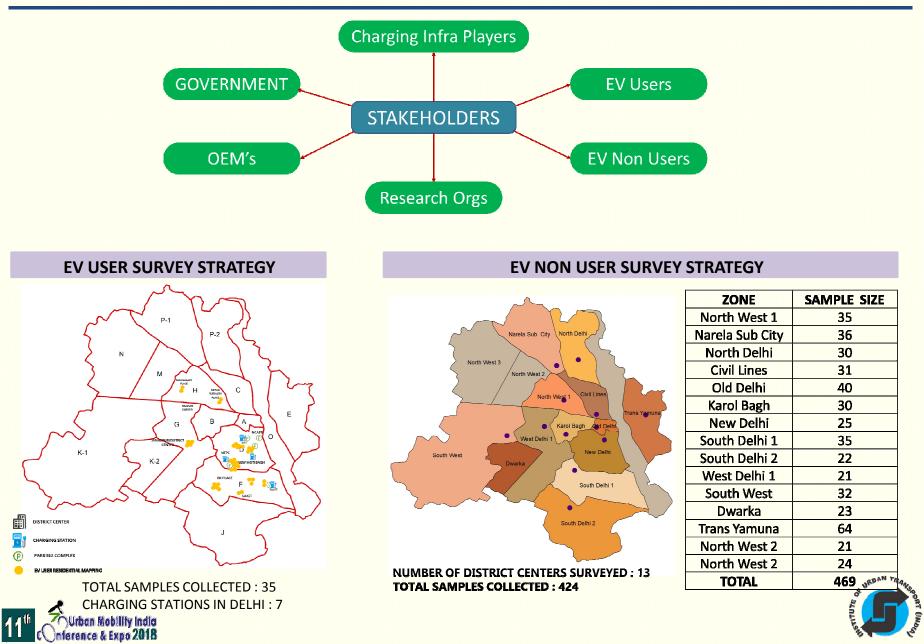

CHARGER TYPE	LEVEL 1	LEVEL 2	LEVEL 1	LEVEL 2
CURRENT TYPE	AC	AC	DC	DC
RANGE/ CHARGING TIME	8 Km/ 60 min.	22 Km/ 60 min.	100 Km/ 20 min	180 Km/20 min

The charging technology is changing very rapidly. The current specialized public charging stations run on DC charging.



GLOBAL POLICY APPROACH

INDIAN POLICY SCENARIO


India has had the following development in the Electric Vehicle Policy Scenario. The pace of reforms have expanded quickly in the past few years with government's increasing emphasis on sustainability and efficiency

STUDY DATA COLLECTION

DELHI EV SCENARIO

DELHI REIGSTERED VEHICLE CATEGORIES

E VEHICLE REGISTRATION IN DELHI

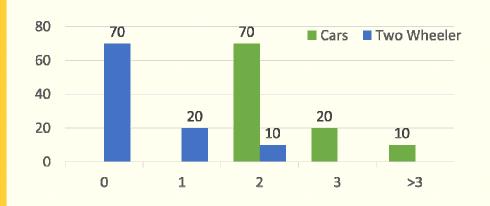
VEHICLE CATEGORIES 2014	VE
Agricultural Tractor	Agr
Ambulance	Am
Bus	Bus
Cash Van	Ele
Crane Mounted Vehicle	Cas
E- Rickshaw	Сга
E- Rickshaw with Cart	E- F
Fire Fighting Vehicle	Fire
Goods Carrier	Go
Invalid Carriage	Inva
Luxury Cab	Lux
Maxi Cab	Ma
M- cvcle/ Scooter	— M-
Mobile Warkshop	Ele
Moped	Mo
Motor Cab	Mo Mo
Motor Car	Mo
Motorized Cycle	Ele
Private Service Vehicle	Mo
Omni Bus	Priv
Recovery Vehicle	Om
Three Wheeler (Goods)	Rec
Three Wheeler (Passenger)	Thr
Three Wheeler (Personal)	Thr
· ·	Thr
Tractor (Commercial)	Tra

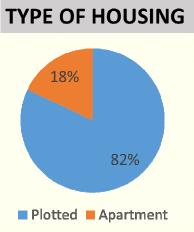
VEHICLE CATEGORIES POST 2	014
Agricultural Tractor	
Ambulance	
Bus	
Electric Bus	
Cash Van	
Crane Mounted Vehicle	
E- Rickshaw	
E- Rickshaw with Cart	
Fire Fighting Vehicle	
Goods Carrier	
Invalid Carriage	
Luxury Cab	
Maxi Cab	
M- cycle/ Scooter	
Electric M-cycle/ Scooter	
Vlobile Workshop	
Moped	
Motor Cab	
Motor Car	
Electric Car	
Motorized Cycle	
Private Service Vehicle	
Omni Bus	
Recovery Vehicle	
Three Wheeler (Goods)	
Three Wheeler (Passenger)	
There = 10(h + - 1 (D 1))	
Three Wheeler (Personal)	

STATE	2016-17	RANK	2015-16	RANK
Gujarat	4200	1	1600	1
Maharashtra	2650	2	1085	4
Rajasthan	2250	3	980	5
Uttar Pradesh	2100	4	1108	3
West Bengal	2045	5	850	6
Andhra Pradesh	1820	6	554	7
Delhi	1072	7	1124	2
Haryana	580	8	220	8
Others	1050		620	
TOTAL	17,767		8141	

EESL VEHICLES DEPLOYED IN DELHI

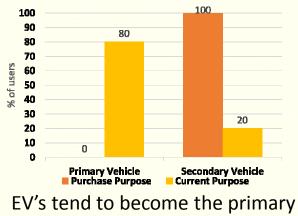
Source	2018-19	2017-18	2016-17
Vehicles for Tender Issued	NA	15,000	250
Vehicles for Tender Accepted		10,000	200
Vehicles delivered by cos.		480	200
Vehicles Deployed in Delhî		115	200
Vehicles Left To be deployed		365	0
Planned procurement	20,000		NA


It can be observed that the main drivers of the electric vehicles in Delhi are the retail and institutional customers



EV USER USAGE SCENARIO

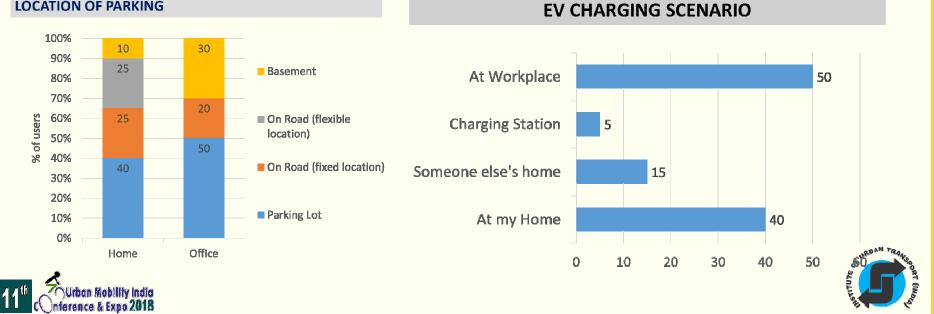
VEHICLE OWNERSHIP


Most EV users own more than 1 vehicle and live in plotted localities with a dedicated charging facility

	ELECTRIC V	/EHICLE		NON ELE	CTRIC VE	HICLE		REMARKS
NO. OF TRIPS	Average	Trips/ D	ay : 3.4		ge Trips/ I	Day : 3		
MADE	64		Trips made on	4 3	3	Trips ma on IC Vel		People prefer to use their electric vehicles
Trips made on a daily	2	2	EV are	2		are const		on Weekdays and IC
basis on the vehicles per household	0 Weekdays	Weekends	more on Weekdays	_	Weekends	through the we		Vehicles on weekends
AVERAGE TRIP	PURPOSE	EV ATL	NON EV ATL		ATIVE FRE	QUENCY	100.00	
LENGTH	To/ From Work	14	18	DIST	RIBUTION	J	90.00 80.00	-EV -Non EV
LENGTH	Shopping	10	9	People use the	eir electri	c vehicles	70.00 60.00	
Purpose wise	Education	8	8	for trips nearl			50.00 40.00	//
average trip length	Medical	6	6	workplace. F	or all oth	er uses,	30.00	URBAN TRA
of the household	Social	2	3	they pref	fer IC vehi	icles	10.00	of un
Urban Mobility India	Other	5	5	EV ATL: 12 Km	n NON E	V: 15 Km	0.00	0 2.5 5 7.5 10 12.5 15 17.5 20 >2 ATL (Kms)

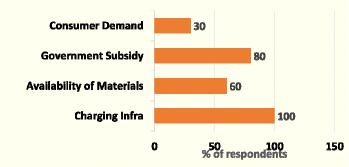
EV USER USAGE SCENARIO

TYPE OF EV OWNERSHIP


vehicle over time

MAJOR ISSUES

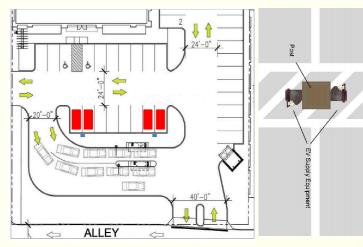
% OF EV USERS CONCERNED ABOUT THE ISSUE


The most concerning issue for people is the fear of accidents from an EV

LOCATION OF PARKING

OEM's & CHARGING ECOSYSTEM PROVIDERS

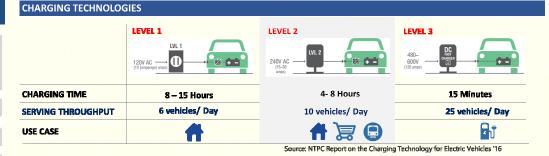
CURRENT BOTTLENECKS FOR EV OEM'S


INFRA PROVIDERS

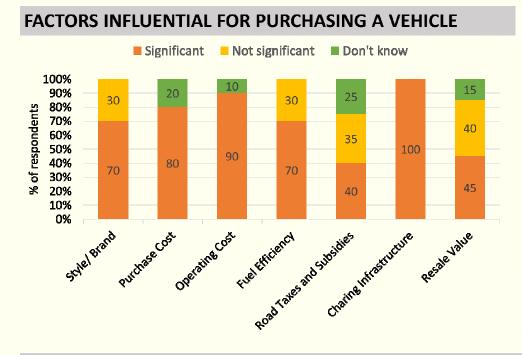
CURRENT BOTTLENECKS FOR CHARGING

The current industry bottlenecks for expanding charging infrastructure is as under

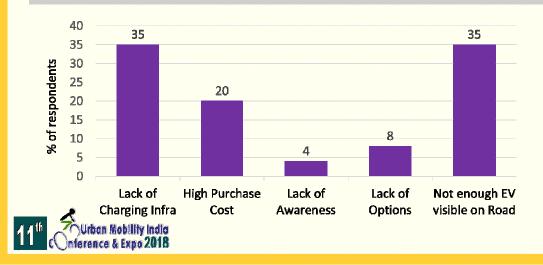
- 1. Lack of viable policy for revenue model for charging user fee
- 2. Lack of availability of Land at the required places
- 3. Little clarity on standardization of electric vehicles

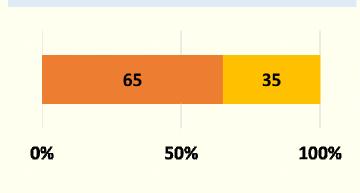


As per Code of Practice, 500 sq. m (about 600 sq. yards) of site with 20 meters frontage/width is required for only Filling Stations without other Services like Lubrications, etc. and 1000 sq. m (1200 sq. yards) with minimum frontage/width of 35 meters is required for Filling-cum-Service Stations.

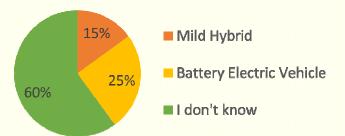

COSTING

Cost of setting up a Level 1 charging point (2 plugs): INR 4 Lakh Cost of setting up a Level 2 Charging Point (2 Plugs) : INR 8 Lakh Cost of setting up a Level 3 Charging Point (1 Plug) : INR 12 Lakh


Operation and Maintenance Cost: INR 10,000/ point/ month


EV NON USER MODE CHOICE MODELLING

REASONS FOR NOT PREFFERING EV CURRENTLY



PURCHASE TYPE OF EV

Additional Vehicle Replace existing

TECHNOLOGY PREFFERED FOR EV

People need more education in order to get convinced and compelled to use and purchase EV

EV NON USER BEHAVIOUR

MODELLING USER BEHAVIOUR

PROBABILITY TO SHIFT

	TARGET YEAR	PROBABILITY TO SHIFT
Scenario1	2020	15.5 %
Scenario2	2025	43.9 %
Scenario3	Existing	5.2 %
Scenario4	2022	20.5 %
Scenario5	2023	28.2 %
Scenario6	2024	37 %

INFRASTRUCTURE REQUIREMENT

CHARGING STATION REQUIREMENT

YEAR	EV SALES (Lakh)	TOTAL CHARGING STATIONS REQUIRED	ADDITIONAL CHARGING STATIONS REQUIRED
2018	4.1	573	
2019	12.8	1866	1292
2020	8.2	2694	828
2021	9.0	2941	247
2022	13.5	4417	1476
2023	13.5	5796	1378
2024	19.3	6327	532
2025	25.0	8195	1869

Assuming 1 Charging Station/ 305 vehicles (Fortum India)

COST OF SETTING UP 1 CHARGING STATION (EXCLUDING LAND COST)

ASSUMING LEVEL 2 CHARGERS

Number of units in each charging station : 4

Cost of setting up each unit : Rs. 8 Lakh

Total Cost of a Charging Station : 32 Lakh

COSTING

Number of Charging Stations proposed by 2025: 8196 Cost of setting up charging stations : Rs. 2600 Crore

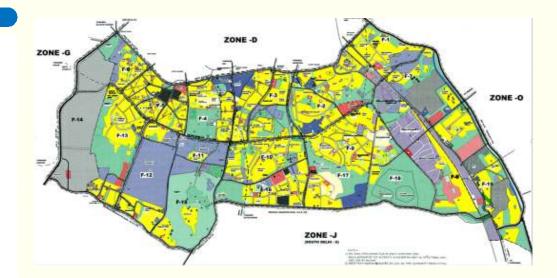
LAND REQUIREMENT

ASSUMING LEVEL 2 CHARGING STATION

Land Required for 1 charging station : 1500 Sq. m Estimated Land Required for 8196 stations : 12.2 Sq. Km.

Assuming 50 %the requirement is met at existing fuel stations

At existing fuel stations, if 1 unit is installed; Total Fuel Stations in Delhi (projected '25) : 3674 Number of units to be installed : 3674 Equivalent Charging Station : 920 New Charging Stations to be set up : 7276 **ADDITIONAL LAND REQUIRED : 10.2 SQ. KM**


Urban Mobility India

EV NON USER MODE CHOICE MODELLING

DISAGGREGATE LEVEL ASSESSMENT

Zone	U _{switch}	Probability of Switch	RTO SERVICED	PROJECTED 2025 DEMAND	PROJECTED ELECTRIC FLEET
South Delhi 1	-1.12	62 %	Vasant Vihar, Sheikh Sarai	399	247
Dwarka	-2.33	55 %	Dwarka	230	126
South Delhi 2	-1.05	49 %	Sheikh Sarai	968	474
North West 1	-2.53	45 %	Wazirpur	232	105
Civil Lines	-2.53	45 %	Mall Road	134	61
New Delhi	-2.35	42 %	IP Estate	360	151
North Delhi	-2.51	39 %	Mall Road	134	52
Karol Bagh	-2.14	38 %	Raja Garden	639	243
Trans Yamuna	-2.24	33 %	Shahadra, Mayur Vihar	549	181
South West	-3.05	28 %	Dwarka	230	64
West Delhi 1	-3.05	23 %	Janakpuri	529	121
Narela Sub City	-3.45	22 %	Rohini	232	51
North West 3	-2.87	20 %	Rohini	39	8
North West 2	-2.98	17 %	Rohini	38	7
Old Delhi	-5-20	18.%edia	lp Estate	360	47
	ince & Ex	TALL A CONTRACTOR		•	

COST IMPLICATIONS

LAND REQUIREMENT

(excluding land cost)

Cost for setting up 1 Charging Station : Rs. 32 Lakh

Cost for setting up 1540 stations : Rs. 492 crore

Land Required for 1 Charging Station : 1500 sq m.

Land Required for 1380 Charging Stations : 2 Sq.

CHARGING STATION REQUIREMENT

Projected 2025 Vehicle Fleet : 11.4 Lakh Projected 2025 EV Fleet : 4.7 Lakh

1 Charging Station needed for 305 vehicles Total Charging Stations Required : 1540

Total Fuel Stations (Existing) : 220 Fuel Stations (2025) : 280

Net Charging Stations Required : 1380

CHANGE IN BYE LAWS PROPOSED

• *For Home,* the charging should be planned as part of the neighbourhood site plans prepared by the DDA/ approved by DDA

Km.

 For offices, at places like Okhla Industrial Area, SISI Complex, Delhi University South Campus, District Centres, there should be charging facility available within their complex in order to encourage people to switch to electric mobility

IMPACT OF ELECTRIC VEHICLES ON THE CITY

CURRENT IMPACT ON THE CITY

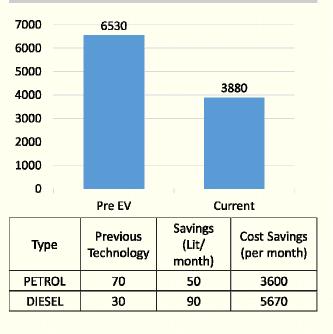
The environmental impact upon conversion from IC engine vehicle to Electric vehicle has been very positive on the environment.

ENVIRONMENTAL IMPACT

TECH	Previous Share	Earlier Fuel Consumption (Lit./ month)	Current Fuel Consumption (Lit./ month)	CO ₂ Emission (Previous)	CO ₂ Emission (Current)	CO ₂ Reduction (per month)	% Change
PETROL	70	90	40	207.9 Kg	92.4 Kg	115.5 Kg	55.5 % reduction
DIESEL	30	120	30	321.6 Kg	80.4 Kg	241.2 Kg	75 % reduction

Assuming CO2 emissions of petrol : 2.31 Kg of CO2 per litre ,CO2 emissions of diesel : 2.68 Kg per CO2 per litre (Source: Exeter UK https://people.exeter.ac.uk/TWDevles/energy_conversion/Calculation%20of%20CO2%20emissions%20from%20fuels.htm

MODELLED IMPACT ON THE CITY


ENVIRONMENTAL IMPACT

Туре	Previous Technology	Current Fuel Consumption (Lit./ month)	Proposed Electricity Consumption (kWh/ month)	CO2 Emission Reduction (Kg)	Vehicles Projected for conversion (2025)	Total CO2 reduction (Tonne/ Year)
PETROL	75	90	40	207 Kg.	20 Lakh	41 x 10 ⁴
DIESEL	25	120	30	322 Kg.	5 Lakh	16 x 1.0 1 TRANK
	iobility India					

Ourban Mobility India

ECONOMIC IMPACT : FUEL COST/ MONTH

CONCLUSION AND THE WAY FORWARD

The study's contribution is limited to assessing the potential of electric cars. The same can be extended in the following ways:

- Assessment of Demand for Electric Two Wheelers
- Assessment of Demand from Public Transport
- Analysis of integrated charging stations for all modes of electric mobility

Going electric with renewables is the future!

THANK YOU

