

PLANNING FOR BUS BASED PUBLIC TRANSPOR

Transitioning towards sustainable public bus transport

Pawan Mulukutla, Director – Integrated Transport & Electric Mobility, WRI India Urban Mobility India 2022, Kochi

Raiesh Mindi / WRI India

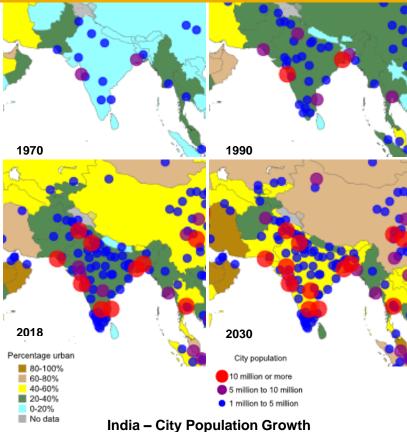
India's Net Zero Pledge

Sustainable planning in Bus based Public Transport has the potential to contribute and assist achieve each of these National Targets.

Reduce the economy's carbon intensity by 45% by 2030.

Target of Net Zero Emissions by 2070

50% of energy demand from renewable energy by 2030



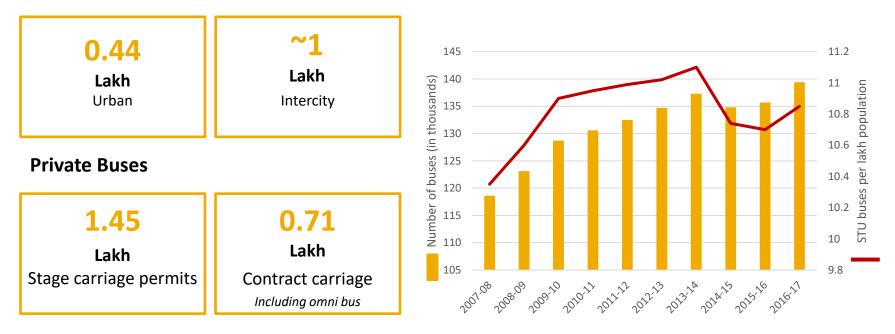
Carbon emissions reduction by 1 billion tonnes by 2030

India's Stand at COP-26, Ministry of Environment, Forest and Climate Change

INDIA URBANIZATION TRENDS

- Today, 1 in 4 urban Indians live in the top 10 largest city agglomerations.
- In India, 87 crore people will live in Cities by 2050
- In less than a decade India will be home to the world's largest metropolitan regions
- The top 10 city agglomerations in India contribute more than 50% of the country's urban GDP
- The transport sector witnesses the fastest growth 5% CAGR - in CO2 emissions by 2050 (compared to other major energy consuming sectors like power and industry).

India's policy initiatives to adopt zero-emission electric vehicles


60,000

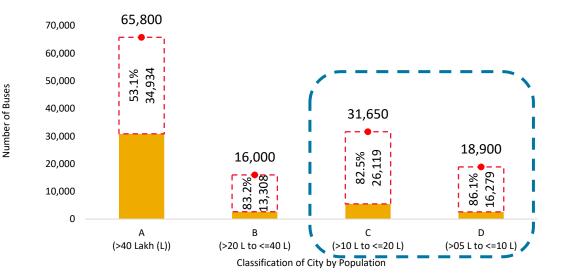
Clean fuel Buses by 2030

Status of Public Bus Transport in India

Public Buses

12.8 Crore passengers ply on 2.91 lakh stage carriage permit buses daily ~ 1 in 10 people in India!

Considering an average ridership of 442 passengers per bus per day


<u>Performance of State Road Transport Undertakings (SRTUs), MoRTH</u> <u>Annual Reports, MoRTH</u>

Current Deficit of urban buses in India

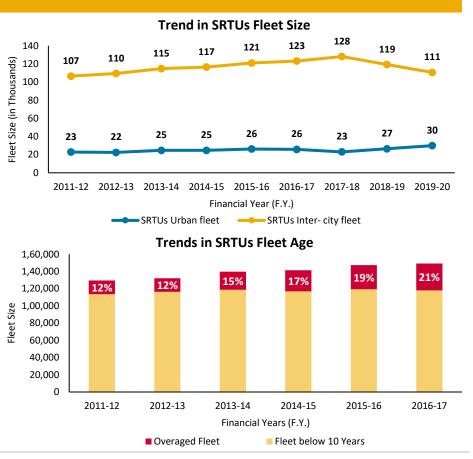
Buses/lakh population:

28.1 for (9) cities with population more than 40 lakh
8.2 for (88) cities with population between 5 to 40 lakh

- **1.32 Lakh** is the current requirement of urban buses
- There is a deficit of ~65% -91,600 buses
 - majority of the deficit in tier II and III cities
 - An immediate requirement of at least 1 lakh buses, while current outlay is for 60,000 buses only

Performance of State Road Transport Undertakings (SRTUs), MoRTH

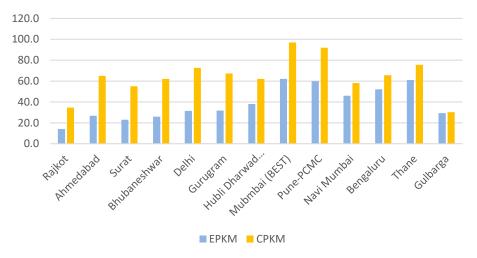
State of Bus Services in Cities, MoHUA


Challenges for urban buses in India

- **Regulation** is built around the 'Road Transport Corporations Act of 1950', where the intent of the act was nationalization where state has monopoly and takes full responsibility to plan, operate and maintain.
- Quality of bus fleet
- **Use of technology is limited**, mostly only use vehicle tracking and very limited use of automatic fare collection.
- There is very limited planning and operations continue on past history.
- Struggle to cover the **gap between cost and revenue** is constant, and has become bigger in the context of COVID
- Buses are stuck in traffic
- Bus operators have very few trained professionals.

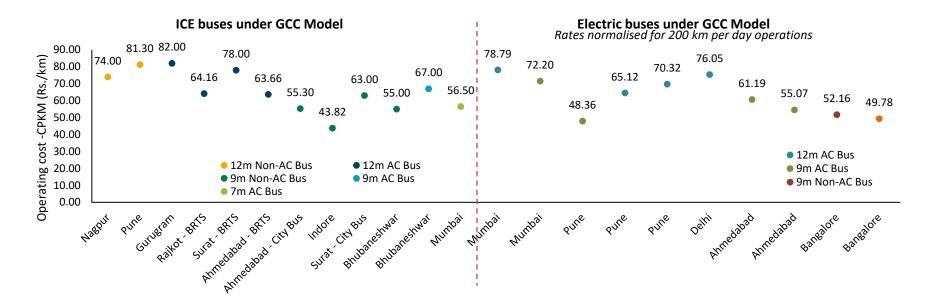
SRTU Operational challenges

- Bus fleet growth not commiserate to growing urbanization in India
- 21% of STU's fleet is overaged 1 in 5 buses Around 40,000 buses are due for scrapping currently
- 27% of total cost of operations is spent on fuel and lubricants
- Overall increase of buses has been only 16000 buses between 2011 to 17 – most of the buses added were replacement to overaged fleet
- Overaged buses not only pollute more, they are also costlier to maintain



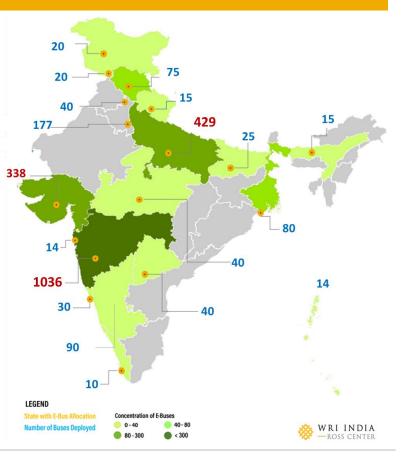
SRTUs' Financial Challenges – Urban Operations

- Steady increase in EPKM and CPKM
- A financial gap between EPKM and CPKM exists and is widening which calls for sustainable financing of bus operations
- Fuel costs have gradually increased and form ~15% of total cost of operations
- Staff costs contribute to more than 60% of total cost of operations
- COVID has affected cost of operations and ridership adversely


Earnings and Cost of Bus Operations

Urban STUs recover only about 55%-60% of their total cost of operations

Cost of Operating buses in India


Electric buses have achieved parity with ICE buses, especially with demand aggregation

Status of E-buses in India

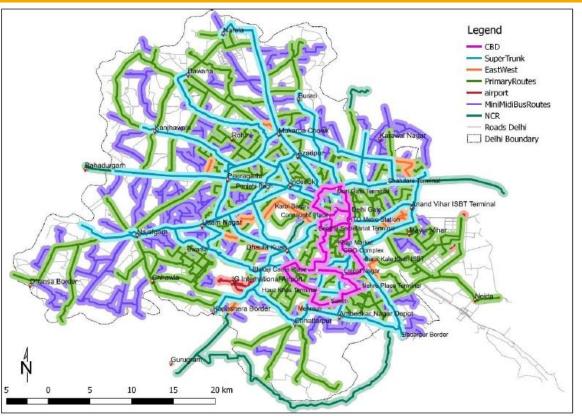
- The top three states leading e-bus deployment -Maharashtra, Gujarat and Uttar Pradesh - account for nearly 72% of the total e-buses currently operational in the country.
- 7,000 e-bus outlay under FAME I and II since 2016, only 2400 operational
- 5,450 e-buses price discovery by CESL under Grand Challenge
- **50,000 e-buses** to be procured under National Electric Bus Program (NEBP)
- Mega cities' targets:
- Delhi to procure 8000 e-buses by 2025
 - Mumbai to target 100% electrification by 2028

CMUB Scheme in Gujarat

- Consistent and adequate financial support mechanism helped growth of public transport across 17 cities in Gujarat; 5 more cities are in process of introducing bus services.
- About 2000 buses are operationalized under VGF scheme.

CM-UBS Scheme, Gujarat

 VGF of 50% or Rs.12.50 per km for CNG buses; on equivalent share by City (July 2018) – applicable for 30 cities with 1 lakh+ population


<u>Before VGF Model</u> 8 Cities operated Organized Public Transport

- Extended VGF to 50% or Rs.25 per km for electric buses; on equivalent share by City (Sept 2019) – applicable for 4 cities (Ahmedabad, Surat, Rajkot, Vadodara)
- Only for running / adding **new buses**
- Only for **PPP based** bus operation
 - Support for 7 years

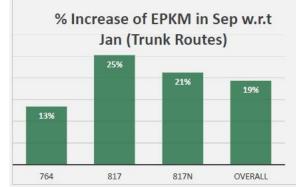
<u>Post VGF Model</u> 17 Cities operates Organised Public Transport

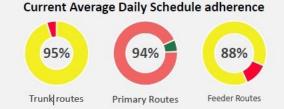
Delhi Route Rationalisation for buses

- Vision for Delhi Route rationalisation was to create an accessible, reliable and affordable bus system in Delhi.
- Hierarchy based route network developed to optimally utilize bus fleet, develop high frequency reliable network, & improve accessibility.

• Hierarchy of Routes:

- CBD circulator: 5-10mins Freq.
- Trunk Routes (directional): 5-10 mins Freq.
- Primary Routes (connecting zonal hubs): 10-20 mins Freq.
- Village Connectivity Routes
- Airport Routes
- NCR Routes




Hierarchy based routes identified

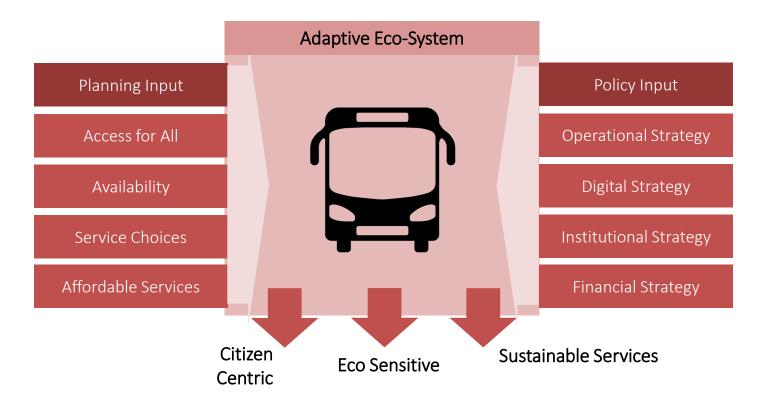
Source: DIMTS

PILOT OF DELHI ROUTE RATIONALIZATION (JAN – SEPT 2019)

- First pilot in Najafgarh area was for 17 routes (including 1 Trunk route) in 2019
- Findings as on Sept, 2019:
 - A 17% increase in average daily ridership was observed, i.e., these routes are catering over 11,000 more trip per day today than what was in January 2019
 - Translated to an overall **19% increase in EPKM** on these 17 routes
 - Over 25% increase in EPKM on trunk route no. 817, in the same period
- Based on the success of pilot Govt of Delhi had additionally rationalized around 30 route in 2021-22.

The project was developed with the objective to provide convenient, accessible and reliable Public transport service to all

Sustainable Mobility Agenda for cities


- Avoid Long distance motorized trips by integrating landuse and transport
- **Shift** Focus and investment to walking, cycling and public transport
- Improve- Quality and fuels, vehicles and data be using technological

developments

Adaptive City Bus Eco-System

Cities need to develop an adaptive City Bus Eco-system to accommodate urban mobility dynamics and ensure sustainable bus operations.

Components of Adaptive Planning

THANK YOU