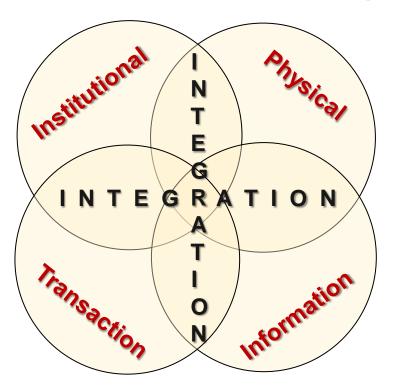
APPLICATION OF ITS IN COMPREHENSIVE MOBILITY PLAN CASE STUDY: GANDHINAGAR

PROF. DR.P.K.SARKAR

NAINA GUPTA

Structure of Presentation


- Introduction
- Objectives & Scope
- Case Study: Gandhinagar
- Travel Demand Assessment & Developing different scenarios
- Smart Transportation Approaches
- Suggested Systems/ITS Tools
- Modal Split for different scenarios
- Financial Feasibility

Introduction

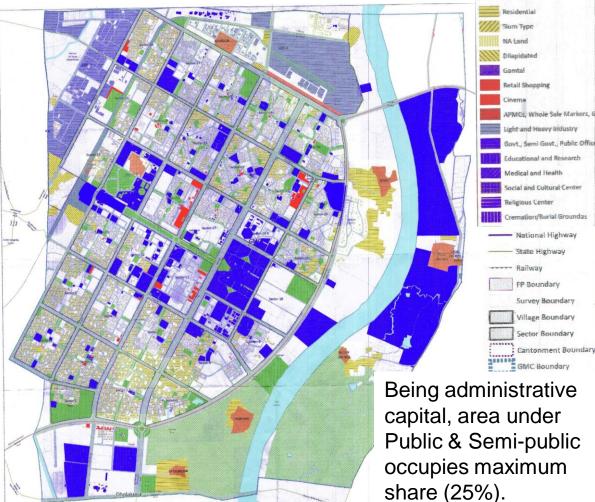
- Intelligent Transport Systems (ITS): Interrelated systems that work together to deliver transportation services.
- Almost every country of the world whether developing or developed, are facing problems in the management of transportation facilities.
- To address these issues, the focus is now shifting from infrastructure development to the optimum use of the existing facilities, where role of ITS proves very useful.

'Smart' & 'Connected' Transport

Objectives

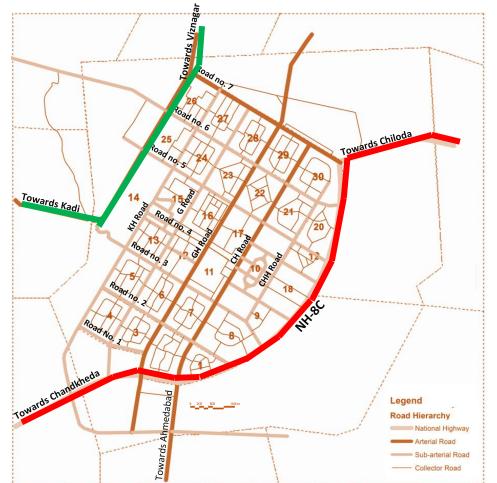
- To estimate the base year and horizon year travel demand.
- To formulate and evaluate different alternative public transport based plans with and without ITS facilities.
- To study the financial feasibility of various alternative public transport plans with and without ITS facility.

Case Study: Gandhinagar


- Population: 2,06,167(Census 2011)
- GUDA area: 387 sq.km.
- GMC area : 57 sq.km.
- Density :36 pph
- WFPR: 34.8%
- Average growth rate: 1.61%
 (Expected to increase in future years with influence of upcoming developments)

Land use:

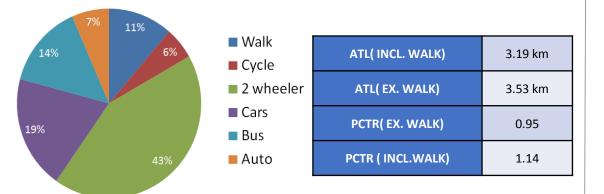
Land use	%Breakup	Area (Ha)
Residential	22	1254
Public Semi-public	25	1425
Industrial	7	399
Commercial	2	114
Open spaces/recreational	10	570
Traffic and Transportation	17	969
Cantonment Land	3	171
Vacant Land	14	798
Total	100	5700


Gujarat State

Ourban Mobility India nference & Expo 2016 Planning Mobility for City's Sustainability

Network Characteristics

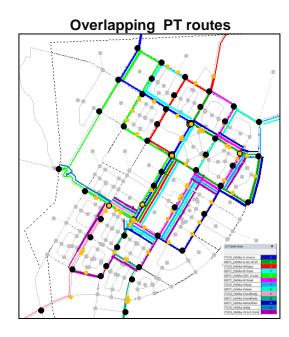
- Grid Iron Pattern with 30 sectors
- NH 8C and SH-71 passes through the city linking with Ahmedabad and other parts of country
- Total Road Network =441 km (excluding local roads153.46km)
- Major road network have journey speeds > than 30kmph.
- Average Journey Speed observed is 44.34 kmph
- Delays observed are operational delays (Max: 31 sec; Min: 7sec)
- 88% of the study network has footpaths, while 12% is deprived of it, but faces a major issue of **discontinuity** despite its availability.
- Pedestrian facilities like zebra crossings are present but no FoB/Subway is present, even on stretches where average speeds observed are > 55kmph.



Travel Characteristics

Household Travel Characteristics:

Modal Split



Mode/ Purpose	Overall % Without NMT	Work %	Education%	Business%	Shopping%	Recreation%	Medical%
Walk		7	12	31	21	15	20
Cycle		4	10	0	2	0	0
2W	52	48	36	31	47	19	40
Car	23	29	8	25	14	40	40
Bus	17	8	27	13	4	19	0
Auto	8	5	7	0	12	8	0

Source: Primary Survey conducted by SPA , 2016

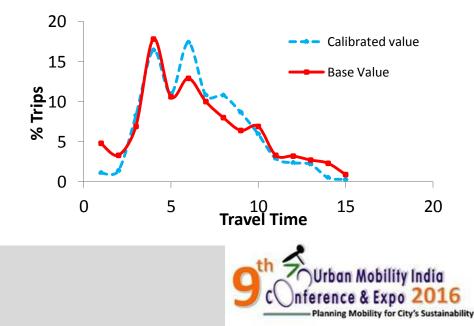
Public Transportation:

- Total route length: 151.6km
- Average Trip Length: 4.1km
- Overlapping routes high within core areas, hence disparity in coverage
- Density of bus networks is: 1.92Km/Km².
- Service coverage indicate that 66% of population are within 500m walking distance.
- City has good transport system that offers a good level of service but, the key attribute like waiting time and service coverage lags behind(>10min).

Base Year Modelling

 27 internal traffic analysis zones(TAZ) & 8 external TAZ have been considered for carrying out travel demand modelling.

Travel Demand Model:


- Trips Generated = Function (Socio-Economic, location, population... etc., as variables).
- Trips Produced=1.14*Population+157.3
- Trip attractions=0.38* Employment, E(PSP)+4.35*E(Commercial)+15.95*E(Recreational) +50.37*E(Terminals) +328.5

Estimated Base year trip ends : 2,79,223

Calibration of Travel Demand Models:

Observed average travel time & distance were 7.4minutes & 3.53km,

while from calibrated model was7.53minutes & 3.94km

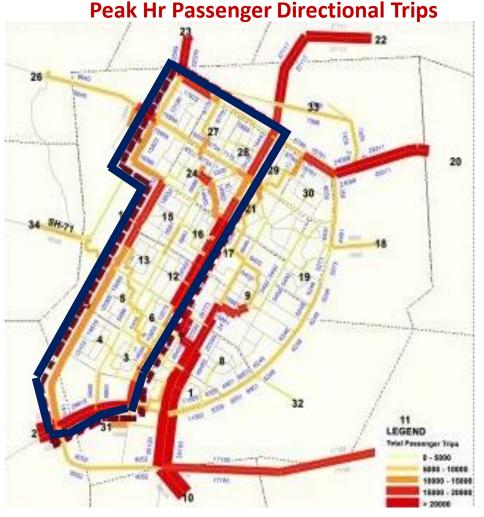
Modal Split

- Technique : Abstract Logit Model
- Input Parameters : Travel Time, Travel Cost , Income, Frequency (supply of PT system)

Variable	Coefficient	Std.Error	b/St.Er.	P[Z >z]			
Income (X1)	-0.233	0.104	-2.251	0.003			
Travel Cost (X2)	0.547	0.093	-5.894	0			
Travel Time (X3)	-0.14	0.064	2.205	0.006			
Frequency (X4)	-0.125	-0.077	1.632	0.005			
ASC_Car	0.688	(Fixed Parameter)					
ASC_TW	1.148	(Fixed Parameter)					
ASC_Auto	-0.811	(F	ixed Param	eter)			
ASC_Bus	-1.026	(F	ixed Param	eter)			
Statistical Test	ts:						
Log Likelihood	Parameter	Chi- Squared	R-Squared	Adjusted R- square			
-321.38	8	621.47	0.595	0.581			

Abstract Logit Model Output

Utility Equations:

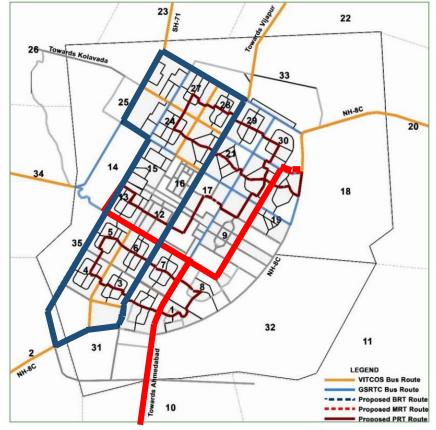

- U(Car) = 0.68-0.23*X1-0.14*X2 +0.55*X3-0.12*X4
- U(2W) = 1.14-0.23*X1-0.14*X2 +0.55*X3-0.12*X4
- U(Auto) = -0.81-0.23*X1-0.14*X2 +0.55*X3-0.12*X4
- U(Bus) = -1.02-0.23*X1-0.14*X2 +0.55*X3-0.12*X4

Observed & Predicted Modal Split:

Mode	Observed (Primary Survey,2016)	Estimated (Logit Model)		
Car	23	21.3		
Two Wheeler	52	46.8		
Auto rickshaws	8	11.3		
Public Transport	17	20.6		

Estimated Travel Demand

- Distributed passenger matrix when assigned on network indicate that optimization of existing system alone; at more acceptable passenger loading standards will not satisfy demand expected.
- Proposed Modes: **BRTS** since the PHPDT is more than 4000 for a certain corridor.
- Need for alternate like **Personalized Rapid Transit (PRT)** is also identified either as transitional or feeder mode to serve stations along BRTS & higher density development nodes that generate travel demand which exceeds capacity of buses in mixed traffic apart from Metro already proposed providing connectivity to Ahmedabad.
- Further, change in modal split has been estimated after incorporating few of the **ITS technologies** discussed below to achieve smart transportation in Gandhinagar.



Different Scenarios

Scenario-1: Business as Usual(Base year network & modal split)

- Scenario-2: Base network+ Proposed MRTS + BRTS(20km) + Organized Bus System & Feeder connectivity
- Scenario-3: Base network+ Proposed MRTS + BRTS + PRT + Organized Bus System & Feeder connectivity
- Scenario-4: Base network+ Proposed MRTS + BRTS + PRT + Organized Bus System & Feeder connectivity+ ITS Components (Real time Information, Common Ticketing, Control Centre)

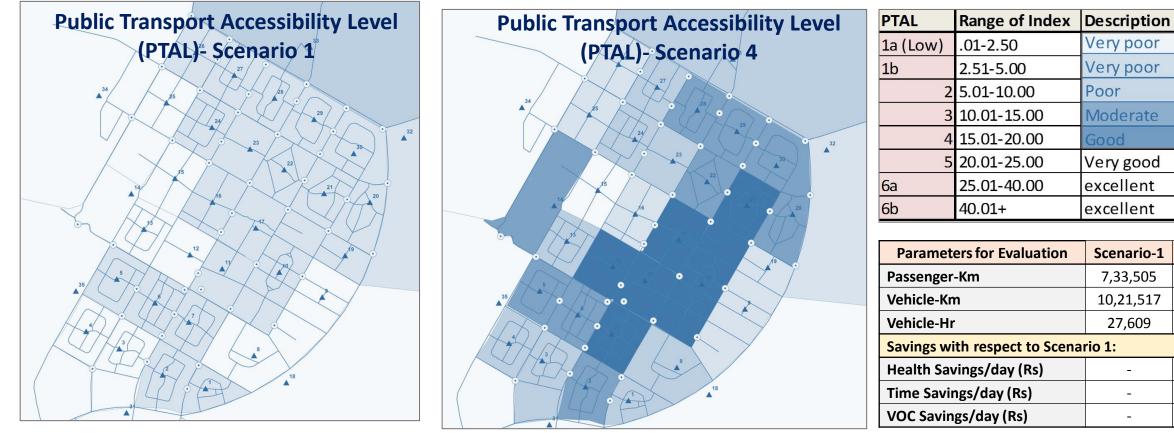
Network Map of Proposed Systems

Utility Equations of Proposed Modes:

- U(Metro) = -0.916-0.23*X1-0.14*X2 +0.55*X3-0.12*X4 (ASC value of Metro is in between bus & IPT assuming bus & IPT users are more likely to shift to metro)
- U(PRT) = -0.979-0.23*X1-0.14*X2 +0.55*X3-0.12*X4 (ASC value in between that of 2W & IPT)

Estimated Modal Split in Different Scenarios

	Scenario 1	Scenario 2	Scenario 3	Scenario 4		
Mode	BAU	Base year network +MRTS + BRTS + Organized bus service + Feeder connectivity	Base year network + MRTS + BRTS + PRT + Organized bus service + Feeder connectivity	Base year network + MRTS + BRTS + PRT + Organized bus service + Feeder connectivity + ITS Components		
Car	21.3	7.2	7.6	6.6		
TW	46.8	30.1	29.7	25.4		
Auto	11.3	4	4.9	4.5		
Bus	20.8	48.5	33.3 🚽	35.6 -		
Metro	-	10.2	7.1 57.8	7.6 - 63.5		
PRT	-	-	17.4	20.3		


For Scenario 4 it is assumed that there would be reduction of 10% travel cost for all public transport users and the reduced travel time (savings in transaction time and waiting time) for different modes as discussed above.

Conclusion:

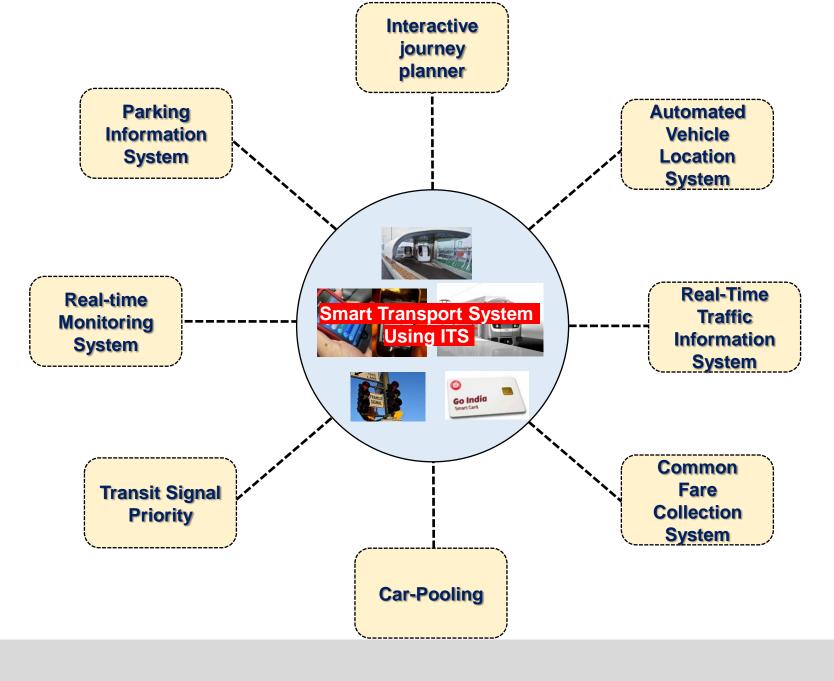
Incorporating savings in travel time due to ITS as in Scenario-4 & assuming cost reduction by 10% for card user's ridership of public transport additionally gets enhanced by 5.7%.

Evaluation of Scenario

- 97% of area falls under category of 1a &1b which shows poor PTAL in scenario-1which touches 4th level by providing BRTS+MRTS+PRT+ITS in Scenario-4.
- Planning strategic transport system as in scenario-4 has lead to a reduction in 41% vehicle-hrs & 44% vehicle-km compared to scenario-1.

Scenario-4

11,28,469


5,81,486

16,412

111036

17,62,458

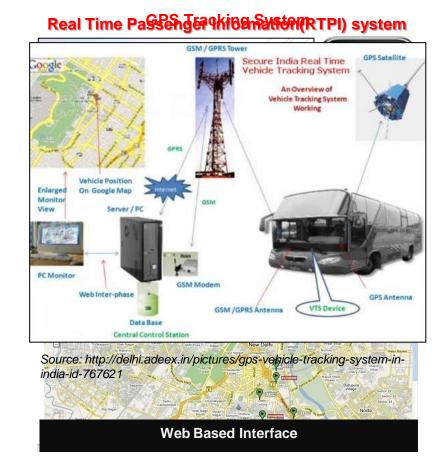
1,32,155

BENEFITS:

- Seamless travel;
- Improve in transit delivery;
- Reliability on public transport;
- Savings in transaction & journey time;
- Distributed demand rather peak hr demand (Diffusing Demand);
- Managing assets more efficiently;

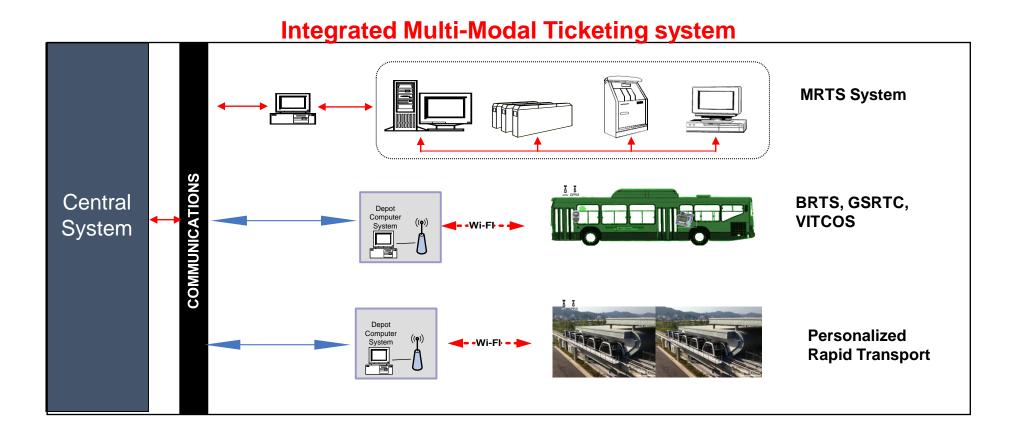
Suggested system/ ITS tools

- Real Time Passenger Information System
- Smart Card
- Speed Cameras
- Control centre



Real-time Passenger Information System

- Aim at bridging information gap by providing pre-trip and/or en-route information to travelers about various travel options, helping in informed travel decisions.
- The system uses GPS technology to determine location and time of the bus, thus predicting expected arrival time at stops en-route.
- RTPIS system may be:
 - 1. Display on bus stops
 - 2. Web based interface for monitoring through control room.
 - 3. Mobile app for users to find out bus schedules

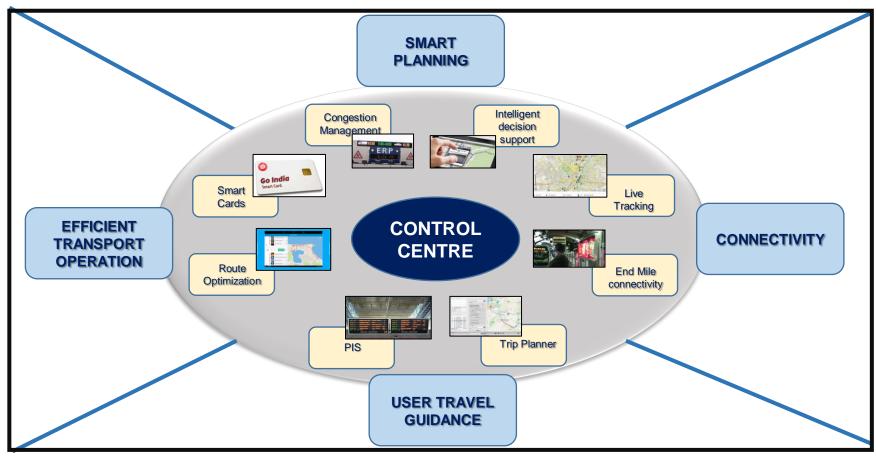

Benefits:

- Improving system control
- Improving bus safety in an emergency condition
- Improving quality of service
- Providing better bus scheduling

Smart Card (Common Ticketing)

Advantages:

For Authorities	For Operators	For Passengers
Creation of seamless journeys in PT networks	Reduce use of cash	No need to carry cash
Unification of ticketing	Reduction in revenue pilferage	Convenience & speed
Better control of revenues & subsidies	Reduce maintenance costs	Easier ways to reload value or renew passes
Integration with other transport services like parking, tolls and taxis	Improved cash flow	Seamless journeys in multimodal
Source of planning data for PT management		Additional appreciated services when available
Reduce cost of selling tickets	Reduced cost of selling tickets	

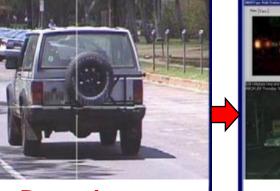

- Study carried out at New Delhi and Chandni Chowk Metro stations, Delhi in 2015 shows that the average transaction time taken by cash users is 18sec (if including waiting time is 414sec) as opposed to smart card users which is 4sec.
- Similarly, for bus users the average transaction time taken by cash users is 15sec (if including waiting time is 138sec). From literatures, a value of 4.5sec for card users.

Reference: Development of Integrated Smart Card for Public Transport System, Unpublished thesis work: Narendra Verma, 2015

Control Centre

- Key hub for all transportation
 activities
- Operating & managing overall collecting traffic by traffic information BMS, from the Card System, Transport unmanned surveillance system & traffic-related authorities institutions such and as Broadcasting, Traffic Traffic signal controller, Police Agency.

Speed Management


Installation of speed camera :

- Reduce traffic speeds and road crashes, and help to reduce injury severity
- Crash rate reduction by 25% on enforced network
- Speed reductions of 5-10km/hr

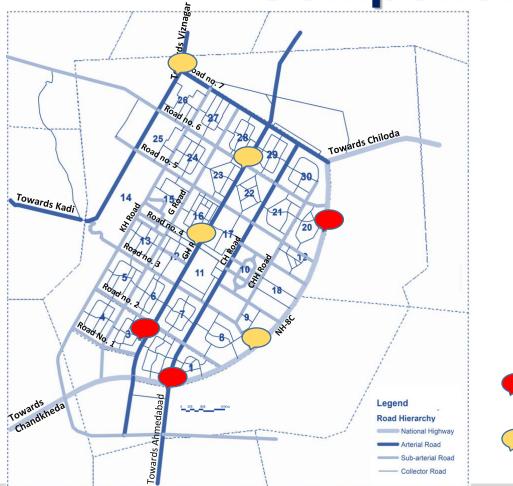
Installation

- Designing System
- Installation & Project Management
- Commissioning
- Ongoing Maintenance

Detection

- Fixed Speed Cameras
- Red Light / Speed
 Cameras
- Mobile Speed Cameras
- Point to Point

Prosecution


- Image Scan & Transfer
- Camera Image
 Download
- Image verification
- Vehicle data verification
- Police Authorization
- Traffic Infringement
 Notification

- Collection
- Payments Processing
- Payments Tracking
- Letters & Phone Calls
- Nominations
- Fine Avoidance Tracking Activities

Proposed Location of Speed Enforcement Component -Gandhinagar

Speed reduction by empty camera boxes:*

- 8-10 km/h near camera box sites
- 5 km/h between boxes

Speed Camera

Psychological treatment (Empty Boxes)

*Source: Thesis Work, "Enhancing Safety Of Road Users Through ITS", Sharad Yadav, 2015

Breakdown of Cost Components

Capital Cost		Operation and Maintenance Cost				
Personalized Rapid Transit(PRT)		Personalized Rapid Transit(PRT)				
Proposed Route Length	24	km	Manpower Cost:	39.87 Cr/yr		
Track(24km)+Stations(56)+Pods(252)	1005.20	Cr	No. of Employees @each station	4	48	
Maintenance Yard+ Power Station & Distribution + Backup	17.30	Cr	No. of Employees at Control Centre	29		
Assets: Corporate Office	1.40	Cr	No. of Employees at Maintenance Yard		46	
Contingency+Fund Syndication+ Training + Approvals	43.80	Cr	Salary @each station Employee	10172	Rs/month	
Total (PRT)	1067.60	Cr	Salary @each control centre Employee	28828	Rs/month	
Bus Rapid Transit(BRT)			Salary @each Yard Employee	19674	Rs/month	
Proposed Route Length	20.08	km	Staff Welfare Cost @ each Employee	1500	Rs/month	
Roadway development (20.08 Km)	177.9	Cr	Total Employees	2	2763	
Bus Stop (22)	10.1	Cr	Total Guide Way Maintenance Cost @0.08 Cr/km/Yr	1.92	Cr/yr	
Foot Over Bridge	5.4	Cr	Total Vehicle Maintenance Cost @0.01 Cr/nos/Yr	22.52	Cr/yr	
Fleet(40)	31.9	Cr	Total Station Maintenance Cost @0.14 Cr/nos/yr	7.84	Cr/yr	
Total (BRT)	245.40	Cr	Total O& M Cost (PRT)	72.15	Cr/ yr	
Common Ticketing	Bus Rapid Transit(BRT)					
System Hardware	50.4	Cr	Bus Stops Maintenance	0.92	Cr/yr	
SystemSoftware	6.8	Cr	Tyres & Tubes	0.61	Cr/yr	
Contingencies@3%	1.7	Cr	Spare Parts	0.60	Cr/yr	
Total (Smart Card)	58.90	Cr	Fuel Consumption	22.93	Cr/yr	
ITS Components			Staff Cost	0.04	Cr/yr	
ITS application and External Tracking (LS)	5.8	Cr	Repair and Maintenance	2.31	Cr/yr	
Control Center (1 no.)	12.3	Cr	Total O& M Cost (BRT)	27.41	Cr/yr	
Speed Camera (3 locations)*	1.5	Cr	Common Ticketing			
Red light cameras (3 locations)*	0.5	Cr	Total O & M Cost (Smart Card)	0.28	Cr/Yr	
Total (ITS)	20.10	Cr				
Overall Capital Cost	1392.00	Cr	Total O & M Cost (ITS Components) @3%	0.60	Cr/Yr	
Landed Project Cost (LPC)	1440.70	Cr	Overall ()X NI Cost 100		Cr/Yr	
LPC+ Interest During Construction(IDC)	1493.34	Cr				

*Reference: (IRAP toolkit, 2013) (Austroads, Reviewing ITS Technologies and opportunities, 2010) (JICA, 2013)

Parameters considered for Financial Feasibility

Following assumptions were made in order to carry out financial feasibility study:

- Concession Period: 30 years (2018 2027)
- Construction period: 2 years (2018-2019)
- Operation starts: 2020
- Inflation rate: 7% per annum
- Government Contribution: 40% of Total Cost
- Debt equity ratio: 2:1 (66.67% : 33.33%)
- Interest Rate: 16%
- Tax Rate: 30%
- Tax benefit: tax free profit for first 5 years
- The financial feasibility of the project is carried out for two conditions:

-Without viability gap funding(VGF)

-With 40% VGF

	Total C	ost(Cr)		Total Re	venue (Cr)		Net	Loan Re	payment	Net Profit		Net Profit	
Year	Capital	O&M	Fare	Advertisent	Commercial	Total	Operating	Repaid	Interest	Before	Taxes	After	
	Cost	Uaw	Revenue	Revenue	Revenue	Revenue	Income	Amount	@16%	Taxes		Taxes	
2018	417.6												Conclusions:
2019	451.5												
LPC @2020	869.1						-869.1	573.6		-869.1		-869.1	
2020		100.4	231.4	11.6	11.6	254.5	154.1	75.0	79.8	-0.7	0.0	-0.7	Financial Internal
2021		107.5	240.7	12.0	12.0	264.8	157.3	75.0	67.8	14.5	0.0	14.5	Rate of Return
2022		115.0	250.5	12.5	12.5	275.5	160.5	75.0	55.8	29.7	0.0	29.7	
2023		123.0	260.6	13.0	13.0	286.7	163.6	75.0	43.8	44.9	0.0	44.9	(FIRR) is observed
2024		131.7	271.2	13.6	13.6	298.3	166.7	75.0	31.8	59.9	18.0	41.9	
2025		140.9	334.0	16.7	16.7	367.4	226.5	75.0	19.8	131.7	39.5	92.2	
2026		150.7	347.1	17.4	17.4	381.8	231.0	75.0	7.8	148.3	44.5	103.8	without VGF.
2027		161.3	360.7	18.0	18.0	396.8	235.5	56.4		179.1	53.7	125.4	
2028		172.6	374.9	18.7	18.7	412.4	239.8			239.8	71.9	167.9	
2029		184.7	389.7	19.5	19.5	428.6	244.0			244.0	73.2	170.8	• FIRR of 17.6%
2030		197.6	489.0	24.5	24.5	537.9	340.3			340.3	102.1	238.2	including ITS
2031		211.4	507.6	25.4	25.4	558.4	346.9			346.9	104.1	242.9	
2032		226.2	526.7	26.3	26.3	579.3	353.1			353.1	105.9	247.2	components <u>with</u>
2033		242.0	546.8	27.3	27.3	601.4	359.4			359.4	107.8	251.6	
2034		259.0	567.7	28.4	28.4	624.5	365.5			365.5	109.6	255.8	<u>40% VGF</u> .
2035		277.1	725.6	36.3	36.3	798.2	521.0			521.0	156.3	364.7	
2036		296.5	752.3	37.6	37.6	827.6	531.1			531.1	159.3	371.7	• FIRR without
2037		317.3	780.2	39.0	39.0	858.2	540.9			540.9	162.3	378.6	
2038		339.5	809.0	40.5	40.5	890.0	550.5			550.5	165.1	385.3	including ITS
2039		363.2	839.1	42.0	42.0	923.0	559.8			559.8	167.9	391.8	
2040		388.7	1091.9	54.6	54.6	1201.1	812.5			812.5	243.7	568.7	<u>components</u> is
2041		415.9	1131.0	56.6	56.6	1244.2	828.3			828.3	248.5	579.8	16.9% with 40%
2042		445.0	1171.7	58.6	58.6	1288.8	843.8			843.8	253.1	590.7	
2043		476.1	1213.8	60.7	60.7	1335.2	859.1			859.1	257.7	601.3	<u>VGF).</u>
2044		509.5	1257.6	62.9	62.9	1383.4	873.9			873.9	262.2	611.7	
2045		545.1	1661.2	83.1	83.1	1827.3	1282.2			1282.2	384.6	897.5	
2046		583.3	1719.1	86.0	86.0	1891.0	1307.7			1307.7	392.3	915.4	
2047		624.1	1779.2	89.0	89.0	1957.1	1333.0			1333.0	399.9	933.1	~
2048		667.8	1841.5	92.1	92.1	2025.7	1357.9			1357.9	407.4	950.5	oth Clirkan Mahilitu India
2049		714.6	1906.2	95.3	95.3	2096.8	1382.2			1382.2	414.7	967.6	9th Urban Mobility India Onference & Expo 2016
				IR	R					17.60%		14.90%	Planning Mobility for City's Sustainability
				NPV @	012%					954 73		425 77	risining mobility for city's sustainability

Conclusion

- It is concluded that system comprising combination of smart, low capacity & eco-friendly system like PRT, integrated with high capacity MRTS and BRTS along with ITS turns out to be most sustainable to meet future demand.
- Planning strategic transport system as in scenario-4 has lead to a reduction in 41% vehicle-hrs & 44% vehicle-km compared to scenario-1.
- Incorporating savings in travel time and travel cost due to smart card & other ITS components overall ridership of public transport gets enhanced by 5.7%.
- The proposed public transport system yields FIRR of 17.6% with ITS components included and FIRR of 16.9% excluding ITS components (with 40% VGF).
- Implementation of such Smart People Mover projects across the cities would definitely have a positive effect on behavioural changes of residents and also support development and attraction of the cities.

THANK YOU !!!

