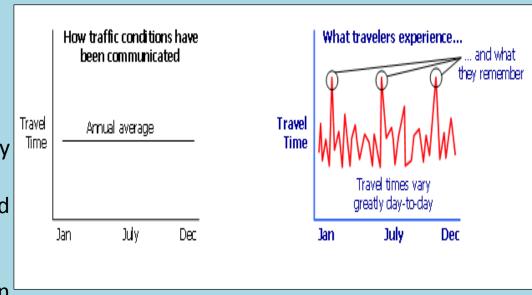


Analysing travel time variability using Wi-Fi detections

Vikram Singh, Ninad Gore, Shriniwas Arkatkar SVNIT Surat

Table of Contents


- Introduction
- Travel Time Variation
- Intelligent Transport System
- Bluetooth/Wi Fi sensors
- Literature Review
- Data Collection
- Data Filtering
- Best Distribution Identification
- Travel Time Variability
- References

Travel Time Variation

Causes of Travel Time Variation

- Recurrent Disturbances
- Non-Recurrent Disturbances
- Improving transportation agency operations,
- Providing advance trip related information to travelers,
- Analyzing choice of route,
- Calibration and validation of simulation models
- Computation of travel time reliability metrics

Source: FHWA

To capture these variations, Spatial and Temporal Travel Time Data is required.

How to get this large amount of data?

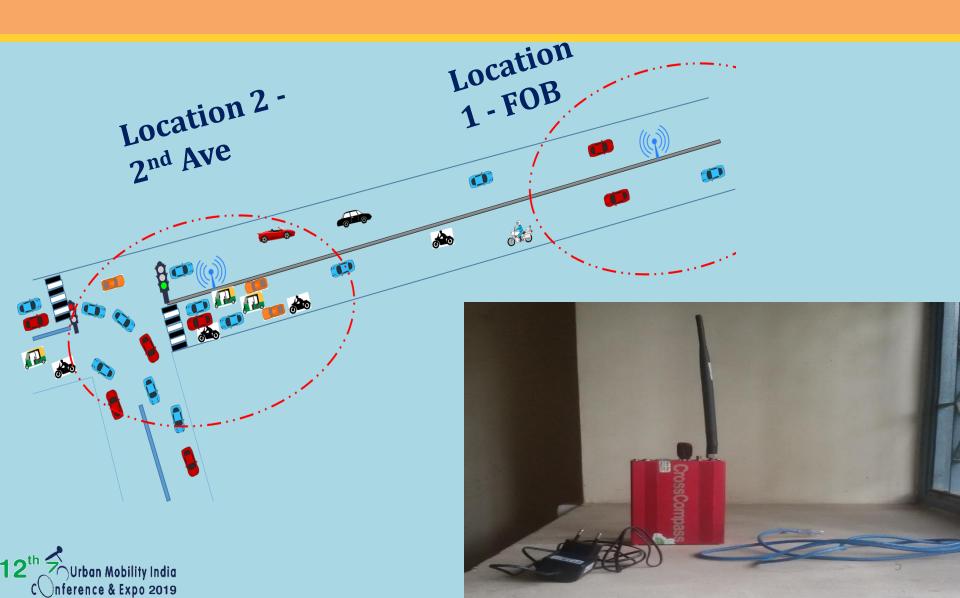
Introduction: ITS Services

Aim: "Optimize efficiency of the existing transport infrastructure, without having to resort to expensive infrastructure upgradation"

Video Imaging

- Need for extensive network of cameras
- High-end computing requirements

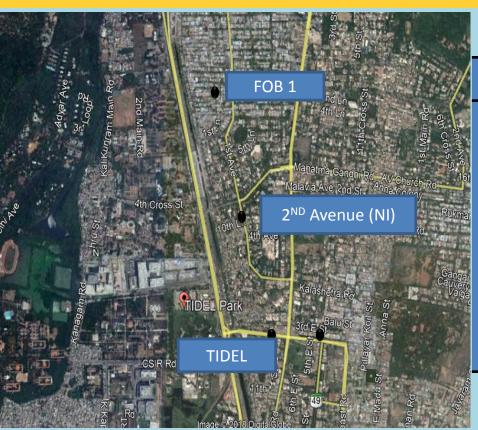
Mobile Sensors (GPS)


- Privacy concerns
- Only public transport vehicles are commonly used as probes
- Very small sample of the vehicle population

Fixed Sensors

- Loop detectors
- Bluetooth / Wi-Fi
 Sensors

Bluetooth/Wi-Fi Sensors


Literature review

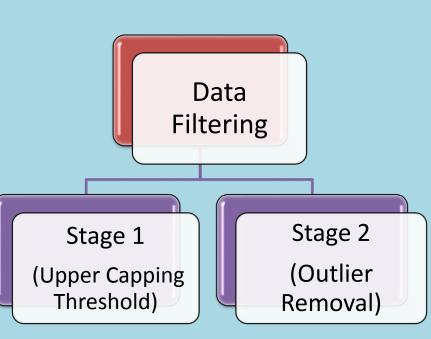
Domain	Authors	Findings
	• Mathew et al. • (2016)	Carried out travel time reliability study of two routes in the city of Chennai using Bluetooth sensor approach. A penetration rate of 4-6% was observed. Bluetooth technology has enormous potential to provide fairly accurate travel time estimations across urban arterials in India.
Notable Studies in India on Bluetooth/Wi-Fi Sensors		
	• Chintan et. al. (2019) •	Study outlines the methodology for formation of O-D matrix by matching the MAC ids for the devices along with their analogous time stamps. Burr and GEV distribution were found to be best fitted. A model was developed to predict the through traffic from the matching detection among links.

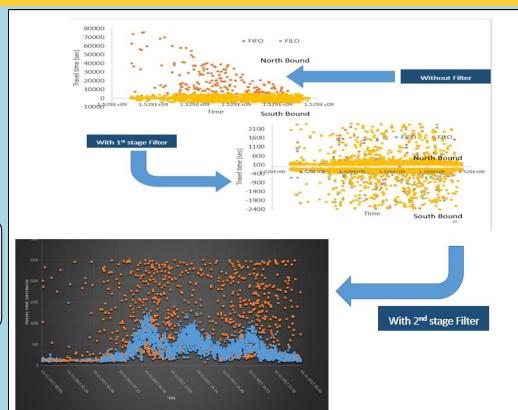
Literature on Travel Time Distribution

Authors	Distributions	Type of facility			
Eman and Al-Deek (2006)	Log-normal, Weibull, Exponential	Freeways			
Nie et al. (2012)	Gamma	Arterial roads, local rods			
Lie et at. (2014)	Generalized extreme value (GEV),	Urban Expressways			
	Generalized Pareto (GP), Weibull,				
	Burr, Normal, Gamma, Log-normal				
Kieu et al. (2015)	Burr, Gamma, Log-normal, Normal,	Public Transportation Systems			
	Weibull				
Talor and Susilawati (2012)	Burr	Urban roads			
Chen et al. (2018)	Normal, Gamma, Weibull, Log-	Expressways, Major roads, local			
	normal	streets			
Aron et al. (2014)	Log-normal, Gamma, Burr, Weibull,	French motorways			
	Normal, Mixture distribution				

Study Location: IT Expressway, Chennai

Study Period: 17-05-2018 to 06-07-2018


Sr. No.	Location	Designation	Description
1	Foot over bridge 1 (near Madya Kailash)	FOB	Mid-block section 6-lane divided carriageway Service lane on either side
2	2 nd Avenue (near Indira Nagar Railway Station)	2 nd Avenue	Signalized T-intersection 6-lane divided carriageway Service lane on either side
3	Tidel Intersection (near Tidel park)	TIDEL	Four-Legged Signalized Intersection 6-lane divided carriageway Service lane on either side


Length of Links:

FOB1 to 2nd Avenue (NI)= 1.0 km 2nd Avenue (NI) to Tidel =0.7 km

Data Filtering

MAD is Median Absolute Deviation
$$M_i = \frac{0.6745(x_i - \overline{x})}{MAD}$$

P-Statistic Value

Weights										
Day	Normal	GEV	Burr	Log normal	Log normal (3P)	Wakeby	Gamma	Log logistic	Log logistic (3P)	Weibul
Monday	0.310	0.041	0.043	0.057	0.060	0.033	0.156	0.063	0.061	0.176
Tuesday	0.301	0.040	0.053	0.038	0.043	0.030	0.218	0.057	0.055	0.166
Wednesday	0.300	0.046	0.049	0.037	0.062	0.022	0.183	0.058	0.065	0.177
Thursday	0.309	0.048	0.046	0.041	0.063	0.026	0.181	0.057	0.067	0.164
Friday	0.304	0.042	0.054	0.032	0.044	0.040	0.165	0.075	0.059	0.185
Saturday	0.286	0.038	0.056	0.073	0.033	0.030	0.161	0.071	0.037	0.214
Sunday	0.158	0.070	0.076	0.124	0.098	0.040	0.070	0.149	0.097	0.117
Weighted	0.244	0.011	0.013	0.021	0.016	0.005	0.088	0.027	0.017	0.091
Rank	10	2	3	6	4	1	8	7	5	9
	P Statistic Value									
Simple Average	0.122	0.020	0.023	0.024	0.024	0.013	0.071	0.032	0.027	0.075
Rank	10	2	3	5	4	1	8	7	6	9
Percentile	0.1331	0.0202	0.0222	0.0192	0.0223	0.0151	0.0781	0.0290	0.0277	0.0711
Rank	10	3	4	2	5	1	9	7	6	8

12th Urban Mobility India

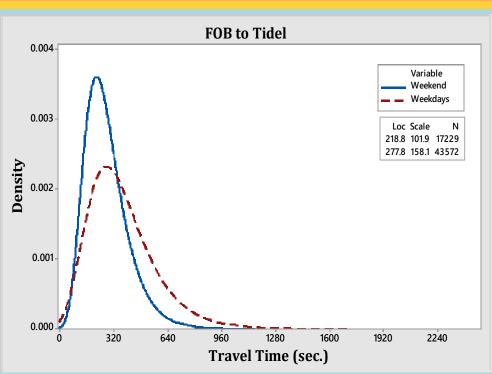
10

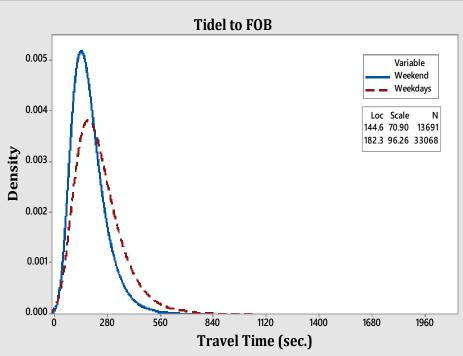
Summary of Shape Factor

Day	FOB to Tidel	Tidel to FOB				
Monday	0.2481	0.14391				
Tuesday	0.02734	0.38437				
Wednesday	0.2583	0.18502				
Thursday	-0.03357	0.28236				
Friday	0.21679	0.38198				
Saturday	0.02133	0.17494				
Sunday	-0.01731	0.18293				
Weekdays	0.14694	0.01599				
Weekends	-0.0063	0.0023				
Timewise						
Off Peak	0.01615	0.29047				
Peak	0.1418	0.30389				

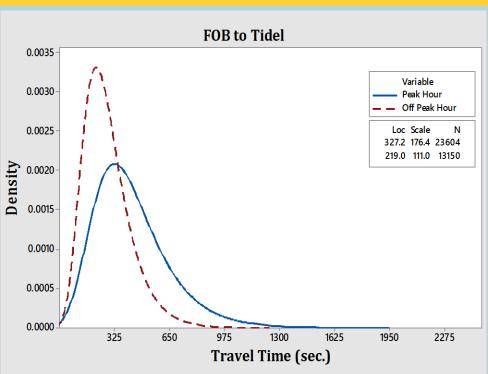
TRAVEL TIME VARIABILITY

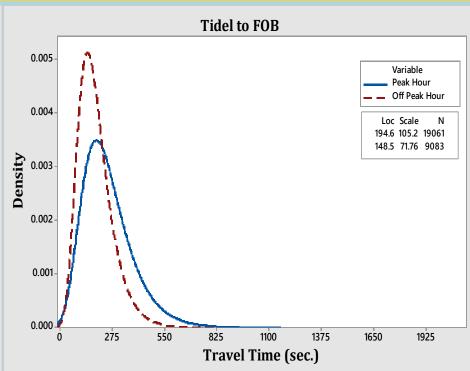
Time of the Day (TOD)

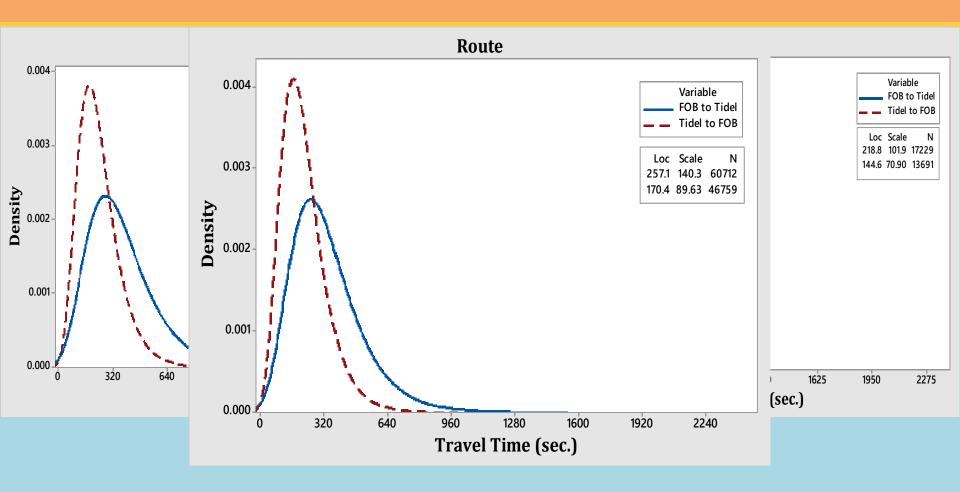

Data Analysis


Day of the Week (DOW)

Direction of Travel (DOT)


Day of Week (DOW)




Time of Day (TOD)

Direction of Travel (DOT)

Conclusions

- •Generalized extreme value distribution as the best-fitted distribution for explaining variations in travel time
- Travel time was observed to be positively skewed for all the survey days.
- •The variation in travel time is significantly influenced by the time of day, the day of week and the direction of travel.
- •Higher travel time values were observed for peak hours and weekdays compared to off-peak hours and weekends. Higher average travel time values were noted for FOB-Tidel compared to Tidel-FOB.
- •The normal distribution can better explain variation in travel time for off-peak hours and weekend. Therefore, the skewness of the curve gradually decreases (approaches zero) as the traffic flow condition varies from extreme peak condition to free-flow conditions.

References

- Abbas, M., Rajasekhar, L., Gharat, A., & Dunning, J. P. (2013). Microscopic modeling of control delay at signalized intersections based on Bluetooth data. *Journal of Intelligent Transportation Systems: Technology, Planning, and Operations*, 17(2), 110–122.
- Abedi, N., Bhaskar, A., Chung, E. and Miska, M. Assessment of antenna characteristic effects on pedestrian and cyclist's travel-time estimation based on Bluetooth and Wi-Fi MAC addresses. *Transportation Research Part C: Emerging Technologies*, 2015. 60, pp.124-141.
- Bakula C, Schneider IV WH and Roth J (2011). Probabilistic model based on the effective range and vehicle speed to determine Bluetooth MAC address matches from roadside traffic monitoring. *J Transp Eng* 138(1):43–49.
- Barceló, J., Montero, L., Bullejos, M., Serch, O., Carmona, C. A Kalman Filter Approach for the Estimation of Time Dependent OD Matrices Exploiting Bluetooth Traffic Data Collection. Presented in 91st Annual Meeting of *Transportation Research Board*, 2012.
- Bhaskar, A. and Chung, E. Fundamental understanding on the use of Bluetooth scanner as a complementary transport data. Transportation Research Part C: Emerging Technologies, 2014. Vol. 37, pp.42-72.
- Blogg, M., Semler, C., Hingorani, M., Troutbeck, R. Travel Time and Origin–Destination Data Collection using Bluetooth MAC Address Readers. *Proceedings of 33rd Australasian Transport Research Forum*, 2010 Canberra, Australia.
- Brennan, T. M., J. M. Ernst, C. M. Day, D. M. Bullock, J. V. Krogmeier, and M. Martchouk. Influence of Vertical Sensor Placement on Data Collection Efficiency from Bluetooth MAC Address Collection Devices. ASCE *Journal of Transportation Engineering*, 2010. Vol. 136, No. 12, 2010, pp. 1104–1110.
- Bullock, D., Martchouk, M., Mannering, F. Analysis of Freeway Travel Time Variability Using Bluetooth Detection. *Journal of Transportation Engineering*, 2011. 137(10), 697–704. doi:10.1061/(ASCE)TE.1943-5436.0000253.
- Chepuri A, Wagh A, Arkatkar SS and Joshi G (2018). Study of travel time variability using two-wheeler probe data an Indian experience. Proceedings of the Institution of Civil Engineers Transport 171(4): 190–206, https://doi.org/10.1680/jtran.16.00101.
- Erkan, İ. & Hastemoglu, H. Bluetooth as a traffic sensor for stream travel time estimation under Bogazici Bosporus conditions in Turkey. J. Mod. Transport. (2016) 24: 207. https://doi.org/10.1007/s40534-016-0101-y
- F. Lei, Y. Wang, G. Lu, and J. Sun. A travel time reliability model of urban expressways with varying levels of service. Transportation Research Part C: Emerging Technologies, vol.48, pp.453–467,2014.

- Haseman, R. J., J. S. Wasson, and D. M. Bullock. Real Time Measurement of Travel Time Delay in Work Zones and Evaluation Metrics Using Bluetooth Probe Tracking. Transportation Research Record: Journal of the Transportation Research Board, 2010. Record No. 2169, pp. 40–53.
- Mathew, J.K., Devi, V.L., Bullock, D.M. & Sharma, A. (2016). Investigation of the Use of Bluetooth Sensors for Travel Time Studies under Indian Conditions. Transportation Research Procedia, 17, pp.213-22.
- Mehbub Anwar A (2010). A study on factors for travel time variability in Dhaka city corporation area. Dhaka. Journal of Bangladesh Institute of Planners 3: 53 –64.
- Namaki Araghi, B., Skoven Pedersen, K., Tørholm Christensen, L. Accuracy of Travel Time Estimation Using Bluetooth Technology: Case Study Limfjord Tunnel Aalborg. Int. J. ITS Res. (2015) 13: 166. https://doi.org/10.1007/s13177-014-0094-z.
- P. Laharotte, R. Billot, E. Come, L. Oukhellou, A. Nantes and N. El Faouzi, "Spatiotemporal Analysis of Bluetooth Data: Application to a Large Urban Network. IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 3, pp. 1439-1448, June 2015. doi: 10.1109/TITS.2014.2367165.
- Porter, J. D., Kim, D. S., Magana, M. E., Poocharoen, P., & Gutierrez ~ Arriaga, C. A. (2013). Antenna characterization for Bluetooth-based travel time data collection. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 17(2), 142–151.
- Pulugurtha, S. S., Md. S. Imran and V. R. Duddu. Detection Criteria to Estimate Bluetooth based Travel Time on Arterial Streets. 56th Annual Transportation Research Forum, Atlanta, GA, March 12-14, 2015.
- Quiroga, C. A., and Bullock, D. (1998). Travel time studies with global positioning and geographic information systems: An integrated methodology. Transp. Res. Part C, 6(1–2), 101–127.
- Susilawati, Michael A. P. Taylor* and Sekhar V. C. Somenahalli. Distributions of travel time variability on urban roads. J. Adv. Transp. 2013; 47:720–736
- Tsubota, Takahiro, Bhaskar, Ashish, Chung, Edward and Billot, Romain. (2011). Arterial traffic congestion analysis using Bluetooth Duration data. ATRF 2011 34th Australasian Transport Research Forum.
- Wang, Y., Vrancken, J. L. M., Seidel, P. Measure travel time by using Bluetooth detectors on freeway. Proceedings of the ITS World Congress, 2011. pp. 1–5.
- Wasson, J. S., J. R. Sturdevant, and D. M. Bullock. Real-Time Travel Time Estimates Using MAC Address Matching. ITE Journal, 2008. Vol. 78, No. 6, pp. 20–23.

Thank You