

- ••••••
-
-

•

ASSESSMENT OF UTILISATION OF FOOT OVER BRIDGES IN DELHI

4-6 November 2022, Urban Mobility India

TABLE OF CONTENT

1.INTRODUCTION 2.STUDY AREA 3.OBJECTIVES 4.LITERATURE REVIEW 5.METHODOLOGY 6.OBSERVATIONS 7.SCORING 8.UTILIZATION OF FOB 9.CHARACTERISTICS OF USERS 10.PERCEPTIONS 11.RECOMMENDATIONS 12.REFERENCES

INTRODUCTION

- Safety, continuity, and comfort: principles for planning pedestrian infrastructure
- Walkability- extent to which characteristics of built environment & land use support pedestrian-friendly environment
- Mobility parameters such as accessibility, safety, comfort, environmental effect, quality, and location
- Gender perspective
 - Transportation plays a key factor that allows women to participate in the workforce and access social opportunities

- In India, transportation sector • accounts for 14% of total GHG emissions (TERI, 2021)
- Road transport accounts for over 90% of emissions

emissions comparing CO2 On emitted (gm/passenger-km)

Diesel Car	1886				
BRTS (AC bus)	36.9				
2-wheeler	36.5				
Metro (in Delhi)	19.7				
Walking and cycling	0				
urset life systematic of transport modes. TEP					

Source: Life cycle analysis of transport modes, IERI

Figure 1: Desired planning in cities Source: ITDP & MoHUA, 2019

- Pedestrian public spaces
 - Encroached by motorized traffic
 - 27% of trips by private motor vehicles occupy 75% of RoW (ITDP & MoHUA, 2019)

- Modal share of work trips
 - 23% of people walk
 - 3% use cars/vans/jeeps
 - 13% use scooters/motorcycles/ mopeds (TERI, 2019)
- Registered vehicles: 11.4 million vehicles (2019); Compounded yearly growth: 6% (Road Transport Yearbook, 2017-18 & 2018-19)
- Number of cars/1000 persons = 424
- Traffic accidents accounted for 39.9% of major causes of accidental deaths in India (National Crime Records Bureau, 2021)
- Number of Traffic Accidents 4715 in Delhi (2020) (National Crime Records Bureau, 2021)
- 42% of total persons killed in road accidents were pedestrians (Government of NCT of Delhi, 2022)
- Total number of FOBs in Delhi: 90 (2020-21)

Area - 1483 sq. km. Total road length- 33,198 km

Figure 2: Road network with RoW widths in Delhi

Source: NIUA, 2020

OBJECTIVES

1.To assess the current FOB infrastructure with regard to mobility parameters

2.To understand the perspectives of different groups of society towards foot over bridges in Delhi

LITERATURE REVIEW

- Pedestrian Crossing Infrastructure FOBs
 - Ensure safety by reducing conflict points
 - Inconvenient: Increases walking length and effort, Inaccessible for vulnerable users, Costs 20x at-grade signalized crossings
- Across Indian cities, high budgetary allocations for FOB construction
- Guidelines related to FOBs
 - UTTIPEC Guidelines, 2009: shortest possible direct route to cross must be to pedestrians
 - MPD 2041: pedestrians should remain at grade with comfortable & safe access; Grade-separated infrastructure be avoided

Figure 3: IIT Gate FOB

METHODOLOGY

Criterion	Azadpur Chowk FOB	IIT Gate FOB	ITO F
Geographical spread	North Delhi	South Delhi	Central
Road Name	Ring Road	Outer Ring Road	IP M
Barricading	Open at-grade crossing	Barricading on median with a gap in between	Comp barrica med
Access to FOB	Ramp and escalators	Stairs and lifts	Stairs escal
Nearest public transit	Metro and public bus stop	Public bus stop	Public bu

Figure 4: Heat map of fatal crashes in Delhi 2020-21

(Source: Government of NCT of Delhi, 2022)

COMFORT

- Shade
- Riser/Height of the stair
- Resting/Seating places on FOB

Figure 5: IIT Gate FOB

Figure 6: Broken shade at Azadpur Chowk FOB & ITO FOB

Figure 7: 5 cm riser at ITO FOB 7

ACCESSIBILITY

- Escalator
- Lift
- Ramp
- Tactile paving/ tiles

Figure 8: Tactile paving/tiles missing at Azadpur Chowk FOB

Figure 9: Lift at IIT Gate FOB

Figure 10: Non- functional escalators at Azadpur Chowk and ITO FOB

SECURITY

- Lighting on the FOB
- Security Guards
- Presence of street vendors

Figure 11: Lights on the FOB at **IIT** Gate

Figure 12: Guard at **ITO FOB**

Figure 13: Street vendors at Azadpur Chowk FOB

Figure 14: Empty stretches at ITO & IIT Gate FOB

CONNECTIVITY

- Public amenities
- Signage about FOB
- Nearest Public transit stop

Figure 15: Signage about IIT Gate FOB

Figure 16: No signage at the entrance of Azadpur Chowk FOB

Figure 17: Bus stop at the 10 foot of IIT Gate FOB Source: Authors

SCORING OF THE FOBS

•	Indicators: comfort,
	accessibility, security, &
	connectivity (ITDP, 2013;
	Arellana et al, 2022; Gao et al,
	2022; Jafari et al, 2022)

- 13 sub-indicators; based on equal weights each measured and scored through on-site observations
- Sociological aspects of pedestrians studied by conducting primary surveys for a sample of 20 at each FOB through questionnaire

S. No. Shade 1 The riser of the stair 2 Resting/ seating places on FOB 3 Total score (x) Average score (x/3) (out of 100) **Escalators** 4 Lift 5 Ramps 6 Tactile paving/ tiles Total score (x) Average score (x/4) (out of 100 Lighting on the FOB 8 Security Guards 9 Presence of street vendors 10 Total score (x) Average score (x/3) (out of 100 Public amenities 11 Signage about FOB 12 Nearest public transit stop with 13 Total score (x) Average score (x/3) (out of 10)

	AzadpurChowk	IIT Gate	ITO			
Co	omfort					
	75	100	75			
	0	25	100			
3	0	0	0			
	75/300	125/300	175/300			
0)	25.00	41.67	58.33			
Accessibility						
	50	0	50			
	0	100	0			
	75	0	0			
	0	0	0			
	125	100	50			
0)	31.25	25	12.5			
Security						
	50	75	75			
	0	0	75			
	75	25	0			
	125/300	100/300	150/300			
0)	41.67	33.33	50.00			
Connectivity						
	0	0	0			
	0	25	0			
in 500 m	100	100	100			
	100/300	125/300	100/300			
0)	33.33	41.67	33.33			

UTILISATION RATE

- Measured in three 10-minute time intervals by manual counting taken at peak hours during weekdays
- At Azadpur Chowk observations were taken from 8:50-9:20 am, at IIT Gate from 9:00-9:30 am, and at ITO from 17:00-17:30 pm
- Pedestrians crossing using FOB and crossing at grade, categorized as users and non-users respectively

	Azadpur Chowk		IIT Gate		ITO	
	User	Non-user	User	Non-user	User	Non- user
	95	154	6	5	84	0
	80	148	5	5	103	0
	42	134	4	7	91	0
Average	72	145	5	6	93	0
Percentage of usage	33.2%		46.9%		100.0%	

Figure 18: Road characteristics at Azadpur 12 Chowk, IIT Gate, and ITO

CHARACTERISTICS OF USERS OF FOB

CHARACTERISTICS OF USERS OF FOB

Educational level of a

pedestrian did not play a factor in choosing FOB

Group characteristic

Group of pedestrians chose riskier behaviour as they chose at-grade crossing over FOB, a group more visible to incoming traffic

PREFERENCE OF PEDESTRIANS BASED ON GENDER

	Female Pedestrian	Male Pedestrian		Female Pedestrian	Male Pedestrian
First Preference	Lighting	Security Guards	First Preference	Escalators	Escalators
Second Preference	Security Guards	Lighting	Second Preference	Ramps	Lifts
Third Preference	CCTV	CCTV	Third Preference	Lifts	Ramps

Preference for security measures

- It was observed that males do not consider lighting on FOB as important in comparison to females
- Last preference is CCTV cameras as it is perceived to only help after an incident

Preference for accessibility measures

• Escalators were considered most important. Secondly, ramps were considered more accessible compared to lifts as lifts are considered secure by female pedestrians

RECOMMENDATIONS

Functional escalators and lifts • Shade roofing for thermal comfort Maintain • Lighting on FOB for security infrastructure • Visible signages about FOB crossing • Install resting/ seating places Tactile paving/tiles and auditory signages Separate street lights at height of pedestrians Universal design Public amenities • FOBs with cycle ramp such as at ITO FOB • Wide table-top at-grade crossings with signals • Continuous footpath with 3 zones - frontage, pedestrian, & furniture zone **Road Design** Shallow pedestrian underpass midway below street level • Improvement for motorized transport: enforcement of speed limits, traffic-calming measures, etc

Figure: 19: Public amenities should be provided around FOBs

THANK YOU

 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •

•

References

- 1. Adlakha, D. and Parra, D., 2020. Mind the gap: Gender differences in walkability, transportation and physical activity in urban India. Journal of Transport & Health, 18, p.100875.
- Arellana, J., Fernández, S., Figueroa, M. and Cantillo, V., 2022. Analyzing pedestrian behavior when crossing urban roads by combining RP and SP data. Transportation Research Part F: Traffic Psychology and Behaviour, 85, pp.259-275. 2.
- Battarra, R. and Mazzeo, G., 2022. Challenges of Mediterranean metropolitan systems: smart planning and mobility. *Transportation Research Procedia*, 60, pp.92-99. 3.
- Campisi, T., Caselli, B., Rossetti, S. and Torrisi, V., 2022. The Evolution of Sustainable Mobility and Urban Space Planning: Exploring the factors contributing to the Regeneration of Car Parking in Living Spaces. Transportation Research 4. Procedia, 60, pp.76-83.
- 5. Chan, E. and Li, T., 2022. The effects of neighbourhood attachment and built environment on walking and life satisfaction: A case study of Shenzhen. *Cities*, 130, p.103940.
- Esztergár-Kiss, D. and Kerényi, T., 2022. Defining mobility packages by using city specific parameters and user groups: a case study. Transportation Research Procedia, 62, pp.467-474. 6.
- Ezzati Amini, R., Yang, K. and Antoniou, C., 2022. Development of a conflict risk evaluation model to assess pedestrian safety in interaction with vehicles. Accident Analysis & Prevention, 175, p.106773. 7.
- 8. Gao, W., Qian, Y., Chen, H., Zhong, Z., Zhou, M. and Aminpour, F., 2022. Assessment of sidewalk walkability: Integrating objective and subjective measures of identical context-based sidewalk features. Sustainable Cities and Society, 87, p.104142.
- 9. Global status report on road safety 2018. Geneva: World Health Organization; 2018. Licence: CC BYNC-SA 3.0 IGO
- 10. Government of NCT of Delhi, 2022. Delhi Road Crash Fatalities Report 2021. New Delhi: Transport Department, Government of NCT of Delhi.
- 11. Harikumar, A., Jain, A. and Thakur, P., 2019. Faster adoption of electric vehicles in India: Perspective of consumers and industry. New Delhi: The Energy and Resources Institute.
- 12. Institute for Transportation and Development Policy (ITDP) & Ministry of Housing and Urban Affairs (MoHUA), 2019. Complete Streets Policy Network. New Delhi.
- 13. Jafari, A., Both, A., Singh, D., Gunn, L. and Giles-Corti, B., 2022. Building the road network for city-scale active transport simulation models. Simulation Modelling Practice and Theory, 114, p.102398.
- 14. Kim, M. and Hall, C., 2022. Does active transport create a win-win situation for environmental and human health? The moderating effect of leisure and tourism activity. Journal of Hospitality and Tourism Management, 52, pp.487-498.
- 15. Maheshwari, M., Jana, A. and Bandyopadhyay, S., 2020. Optimizing the Modal Split to Reduce Carbon Dioxide Emission for Resource- Constrained Societies. *Transportation Research Procedia*, 48, pp.2063-2073.
- 16. Ministry of Road Transport & Highways, Government of India, 2021. Road Transport Year Book 2017-18 and 2018-19. New Delhi: Ministry of Road Transport & Highways, Government of India.
- 17. Mishra, D. and Goyal, P., 2014. Estimation of vehicular emissions using dynamic emission factors: A case study of Delhi, India. Atmospheric Environment, 98, pp.1-7.
- 18. Nag, D., Bhaduri, E., Kumar, G. and Goswami, A., 2020. Assessment of relationships between user satisfaction, physical environment, and user behaviour in pedestrian infrastructure. *Transportation Research Procedia*, 48, pp.2343-2363.
- 19. National Association of City Transportation Officials, n.d. *Global Street Design Guide*. New York: Island Press.
- 20. National Crime Records Bureau, 2021. Accidental Deaths & Suicides in India 2020. National Crime Records Bureau (Ministry of Home Affairs).
- 21. Naveen, 2009. Pedestrian Subway Change In Design. [Blog].
- 22. P., N., Kamath, A., & Paul, A. M. (2021). Everyday Place Making Through Social Capital Among Street Vendors at Manek Chowk, Gujarat, India. Space and Culture, 24(4), 570–584. https://doi.org/10.1177/1206331219830079
- 23. Parisar Sanrakshan Sanvardhan Sanstha, 2010. Searching High and Low: Study of Pune's Pedestrian Crossing Facilities. Pune: Parisar Sanrakshan Sanvardhan Sanstha.
- 24. Ponting, A. and Lim, V., n.d. Elevated Pedestrian Linkways Boon or Bane?. Singapore: Centre for Liveable Cities.
- 25. Rahman, F., Rabby, M. and Islam, K., 2022. Assessing Pedestrian Safety In Cosideration of Existing Pedestrian Facilities. In: 5th International Conference on Civil Engineering for Sustainable Development. Bangladesh.
- 26. Soliz, A. and Pérez-López, R., 2022. 'Footbridges': pedestrian infrastructure or urban barrier?. Current Opinion in Environmental Sustainability, 55.
- 27. TERI. 2012 Final report Life cycle analysis of transport modes (Volume I) New Delhi: The Energy and Resources Institute. 84pp.
- 28. TERI. 2020. Road map for Electrification of Urban Freight in India. New Delhi: The Energy and Resources Institute
- 29. Tiwari, G. and Nishant (2018) Travel to Work in India: Current Patterns and Future Concerns. TRIPP-PR-18-01. Transport Research & Injury Prevention Programme, Indian Institute of Technology Delhi, New Delhi.
- 30. Tuominen, A., Sundqvist-Andberg, H., Aittasalo, M., Silonsaari, J., Kiviluoto, K. and Tapio, P., 2022. Building transformative capacity towards active sustainable transport in urban areas Experiences from local actions in Finland. Case Studies on Transport Policy, 10, pp.1034-1044.
- 31. Vadlamudi, S., 2021. Foot over-bridges in city to take longer. *The Hindu*.

