

Manual for Implementation of ITS and MIS for Urban Bus System

15th November 2019

AGENDA

Structure Of the ITS / MIS Manual

Chapter 1: Introduction to the Manual

Chapter 2: Overview of ITS and MIS Projects

Chapter 3: Planning an ITS / MIS Project

Chapter 4: Design the ITS / MIS Project

Chapter 5: Implementation and Evaluation of ITS / MIS Projects

INTRODUCTION

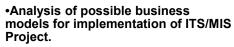
ITS and MIS are important tools for public transport agencies

Many authorities have implemented ITS and MIS over last few years

However, ITS/MIS projects have met with limited success

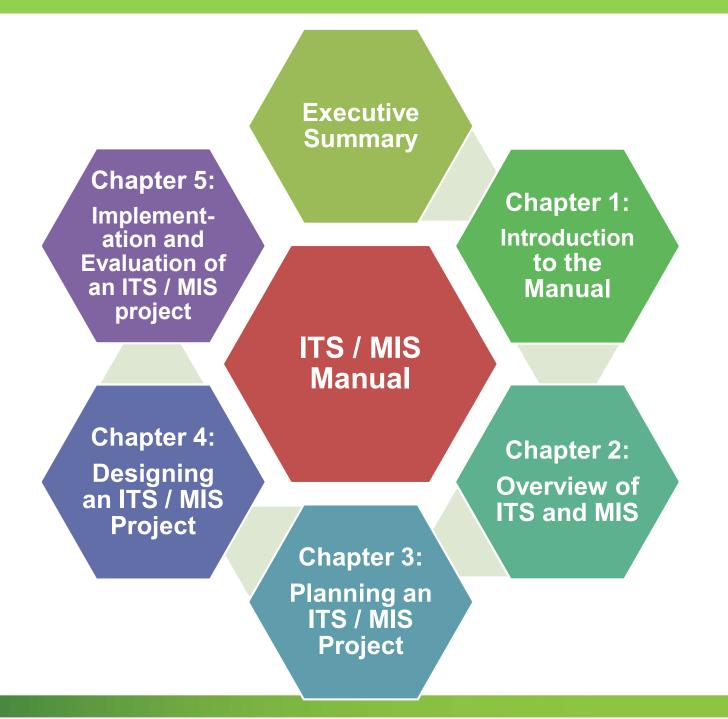
Considering the importance of ITS and MIS, MoHUA, with the support of the World Bank, has taken an initiative to develop a manual for ITS and MIS

The ITS/MIS manual will serve as a guidance document for the public transport agencies in planning, designing, implementation and evaluation of ITS and MIS projects


Basic characteristics of ITS and MIS, benefits and limitations

Support to PT
Agencies for
better
understanding
of =>

Holistic planning for ITS and MIS in line with management and operations functions of urban bus services


Laying down ITS and MIS systems requirements like data, information processing, Networks, communications, system architecture and reporting requirements

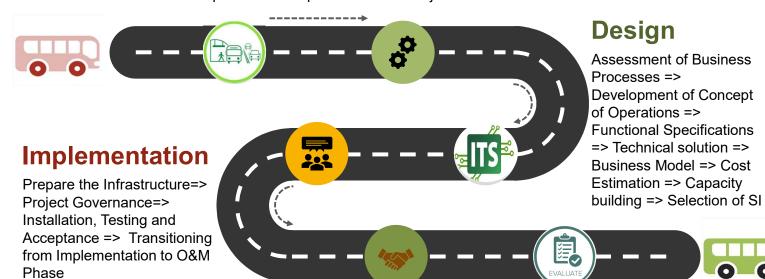
 Estimation of overall cost including implementation costs, O&M costs and in-house costs

STRUCTURE OF THE ITS / MIS MANUAL

Chapter 1: Introduction to the Manual

CHAPTER 1: INTRODUCTION TO THE MANUAL

1 Why ITS or MIS is Needed? 2 Purpose and Scope of the Manual 3 Target Audience 4 Guidance for Using the Manual 5 Reference Material, Credits and Acknowledgements


Purpose and Scope of the Manual

Purpose

To act as a guidance document for the entire lifecycle of ITS / MIS projects

Planning

Need Assessment => Stakeholder Engagement => Goals and Objectives => Functions and Services => Development of Scope => User requirements and Project Plan

Evaluation

Finalization of Performance Indicators=> Measurement of Performance Indicators Pre and Post Implementation=> Performance Analysis => Follow-up Action Plan

Target Audience

Target Audiences

PT Agencies

Operators

(operating urban bus services including BRTS)

Consultants

(engaged in providing consulting services to PTAs and Operators)

Suppliers (Systems Integrators and suppliers involved in implementing ITS and MIS projects for urban bus services)

Levels of Users Targeted

Chief Executives / Top Management

ITS/ICT/IT heads

Heads of other departments

Middle management officers

Other ITS/ICT/IT personnel

Chapter 2: Overview of ITS and MIS Projects

CHAPTER 2: OVERVIEW OF ITS AND MIS

1 ITS Application Areas, Benefits of ITS

2 MIS and its Benefits

3 ITS / MIS Technology Framework

4 Generic Components of ITS / MIS

5 Case Studies of ITS / MIS

6 Limitations and Cautions of ITS and MIS

Overview of ITS

Application Areas of ITS

Overview of ITS

Technology Components of ITS

S.No	ITS Application Area	ITS Technologies	Devices
1	Operations Management	 Automatic Vehicle Location System Automated Scheduling and Dispatch System Vehicle Identification 	 Vehicle Tracking Device On-Board Integrated Controller Unit RFID Devices Driver Management Console
3	Passenger Information System	 In-vehicle Display Units At-Station Display Units Web-based Passenger Information System Mobile App based Passenger Information System 	 LED / LCD displays in Buses LED /LCD displays at bus stations/bus stop Mobile devices Passenger Announcement Devices
2	Fare Collection System	 Fare Media (Paper-based tickets, smart cards and mobile device based tickets) Devices to read/write media Back-office systems Depot / Station ICT equipment and infrastructure. Central Clearing House 	 Electronic Ticketing Machines Smart Card Validators Ticket Vending Machines Smart Card Issuance Terminals Card Personalization Devices Fare Gate (in case of BRTS)
4	Security System	In-Bus surveillanceAt-Station surveillanceAt-Depot surveillance	 In-bus and at-station CCTV Cameras. At-Depot CCTV cameras. Digital Video Recorder Storage of video feed at Data Center

Overview of MIS

Financial Performance Indicators

Operational Performance Indicators

Operational Cost

- Personnel Cost
- Material Cost
- Operating Cost Per Effective Kilometer (CPKM)

Revenue

- Traffic Revenue
- Non-Traffic Revenue
- Subsidy re-imbursement
- Fare concessions re-imbursement
- Total earnings per bus per day or per km

Performance Ratios

- Total Cost per bus per day (on road)
- Percentage return on capital invested
- Schedules earning more than total cost
- Schedules with earnings higher than variable cost but lower than total cost
- Schedules earning less than variable cost
- · Operating cost per passenger km

Capacity

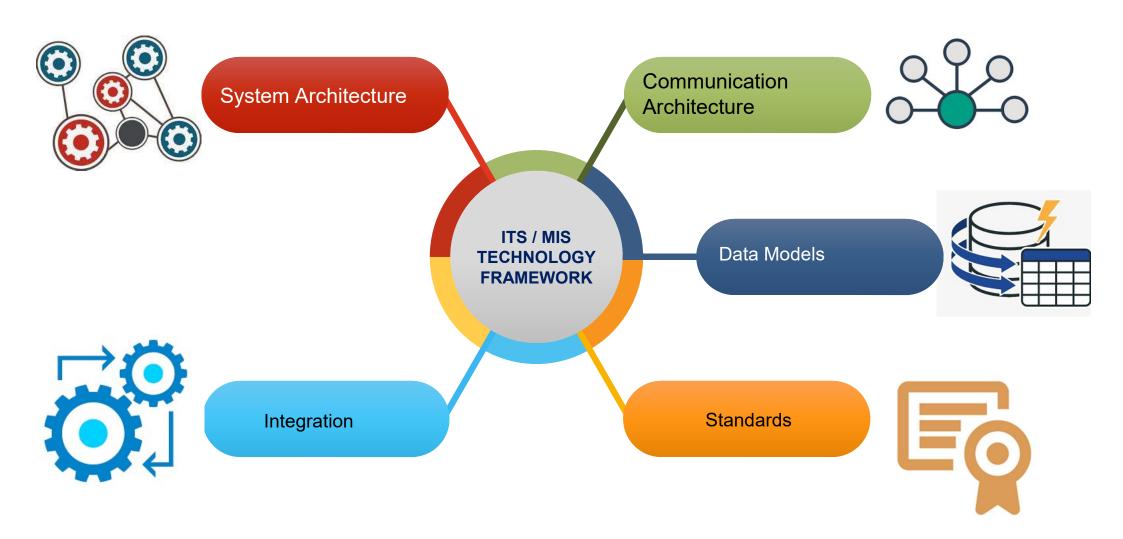
- •Fleet Size
- Buses on-Road
- ·Buses off-Road
- ·Bus Utilization per day
- ·Staff ratio per bus

Serviceability

- Scheduled kms vs Effective kms
- Effective kms vs cancelled kms
- Total Passenger kms
- Load factor per bus / per route
- Passengers carried per bus per day

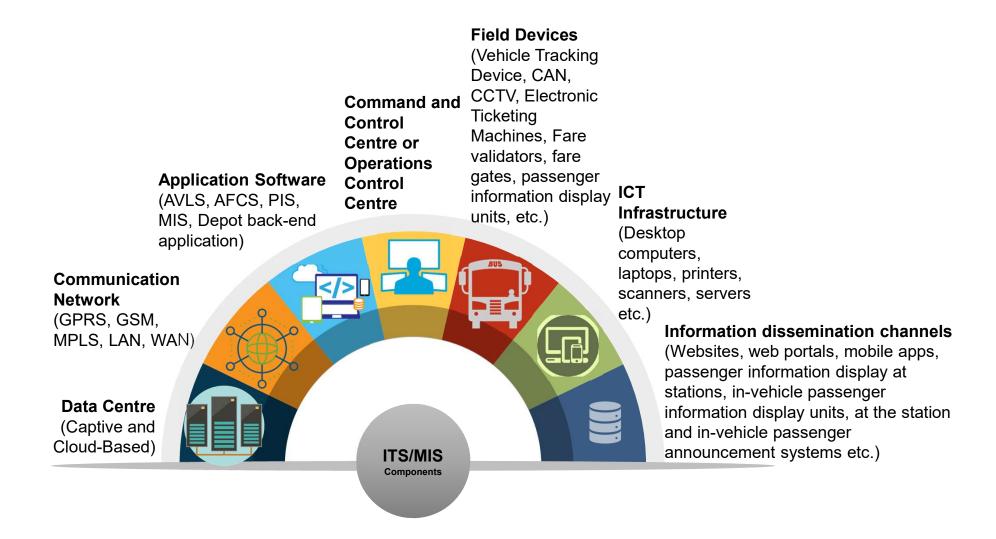
Reliability

- Trips scheduled vs
 Trips cancelled
- Regularity and punctuality
- Adherence to operational discipline (rash driving, stops skipping, route deviations, crew behaviour)
- Breakdowns recorded for every 10,000 kms



Safety

- Accidents recorded per 100,000 kms
- Number of fatal accidents recorded
- Number of non fatal accidents recorded
- Number of complaints received from passengers on crew behaviour, rash driving, stops skipping, route deviations



ITS / MIS Technology Framework

Generic Components of ITS / MIS

Case Studies of ITS / MIS

ITS / MIS implementation in selected cities in India

Summary of ITS / MIS applications implemented

Challenges faced and overcome in implementing ITS / MIS

Impact of ITS / MIS

Key Lessons Learnt

Key Lessons Learnt

	PROJECT PHASE	KEY LEARNINGS	
1	Project Conceptualization and Design	 Lack of in-house capacity to understand and conceptualize ITS/ MIS Project Challenges in drafting requirements – 'one size fits all' approach Lack of availability of proper documented guidelines for planning and implementing ITS initiatives for Indian cities 	
2	Project Procurement	 Difficulty in attracting good SIs – High risk, ambiguity in scope, PQ conditions not in line with project scope/ value, stringent SLAs Long and drawn out bidding process with multiple iterations 	
3	Project Implementation	 Long and drawn out bidding process with multiple iterations Lack of in-house capacity to review/approve deliverables Ambiguity in scope leads to change requests/ disputes Lack of readiness on part of authority – site, buses, power, users etc. Acceptance criteria not clearly laid down Resistance to change at various levels of the organization Instance of sabotages to ITS equipment installed on buses Lack of experience on part of the SI in implementing ITS projects for large fleet size Long duration to achieve stabilization of the ITS initiatives 	
4	Operations and Maintenance	 Vendor lock-in and inability to scale up beyond the terms agreed in the RFP Inadequate support provided by the SI during the maintenance Integration with 3rd party/external systems 	

Limitations and Cautions of ITS / MIS

ITS/ MIS are not a single-stop solutions to the issues faced by PT Agencies. They need to be supported with right processes/people and effective use of the system

PT agencies need to identify the goals for the proposed ITS/MIS project carefully

PT Agency should ensure that unnecessary expectations on benefits from ITS/MIS are not built up

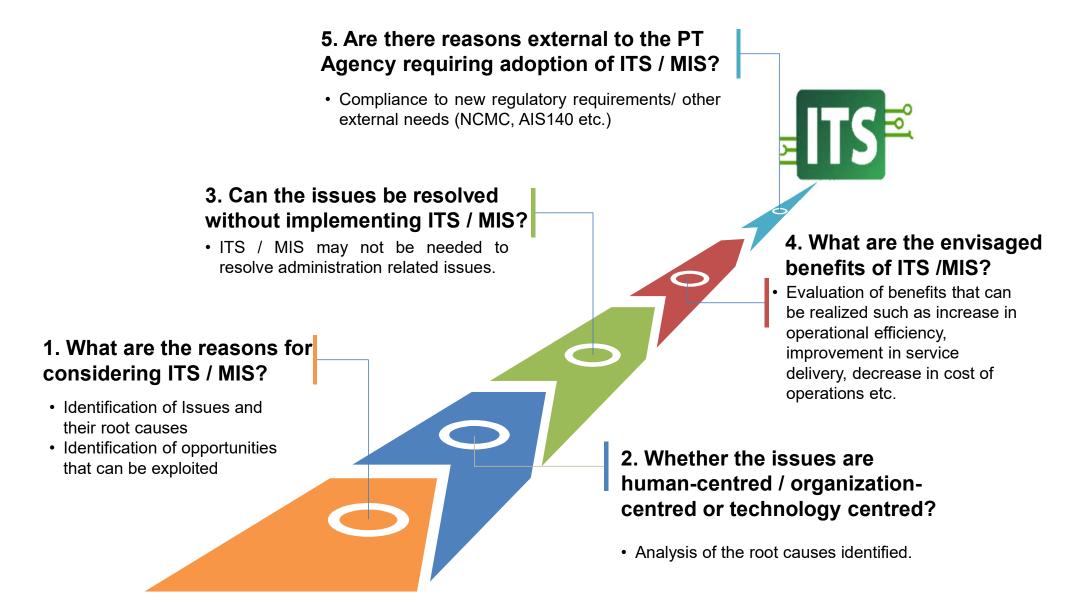
Co-operation and willingness on part of the different stakeholders to use the ITS / MIS is the most critical aspect for it to succeed

There is a possibility that the PT Agencies may face resistance to change on part of the users of the system

ITS/MIS is not a means to make up for the poorly managed and organized public transport systems

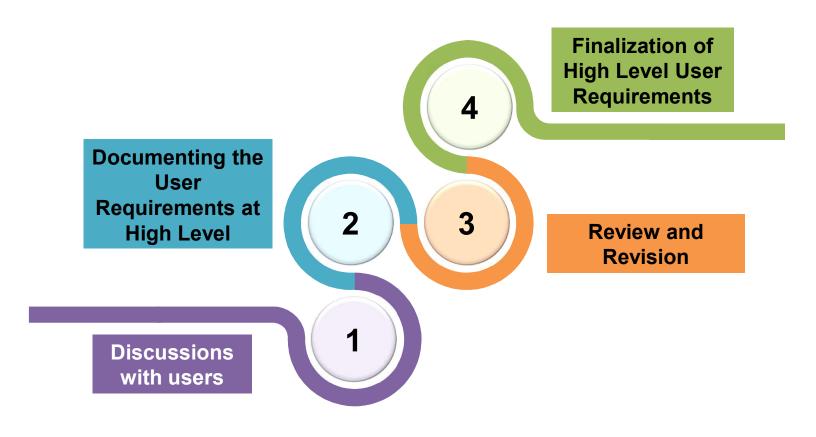
ITS / MIS initiatives need financial commitment, both for implementation as well as for O&M

Chapter 3: Planning an ITS / MIS Project


Overview of Planning an ITS / MIS Project

- 1. Need Assessment
- 2. Stakeholder Identification
- 3. Setting of Goals and Objectives
- 4. Identification of Functions and Services
- 5. Identification of Users of ITS / MIS
- 6. User Requirements Preparation
- 7. Development of Scope of ITS / MIS Project
- 8. Preparation of Project Plan

WORKING NOTES AND HIGH LEVEL COST ESTIMATES



Need Assessment for ITS / MIS

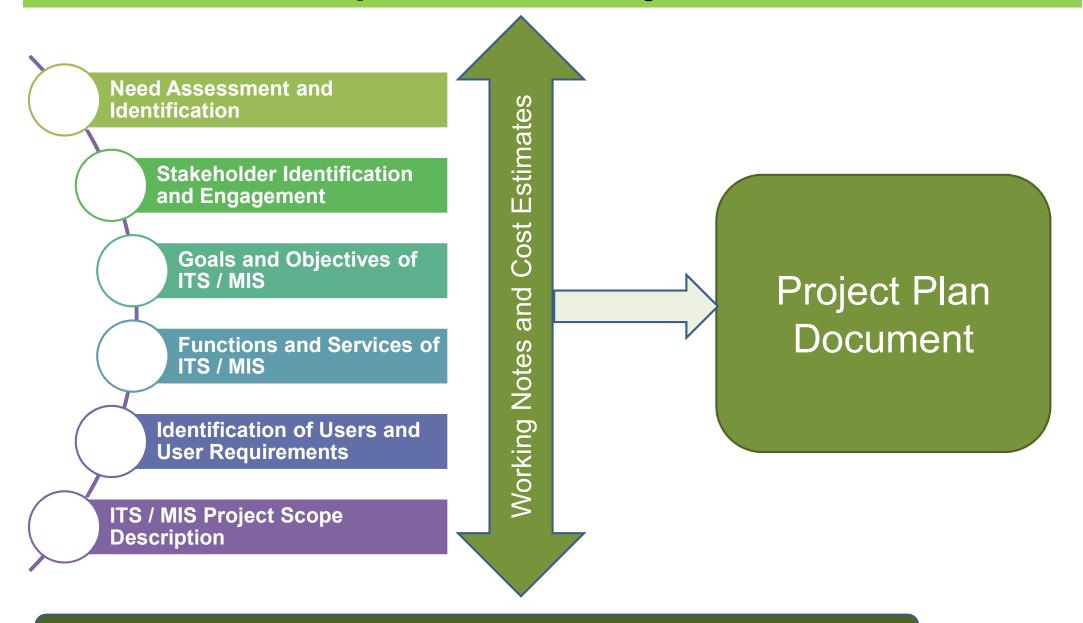
Finalization of User Requirements

SAMPLE USER REQUIREMENTS

Development of Scope of ITS / MIS Project

Identification of ITS / MIS technologies in accordance with application areas

Identification of ITS
/ MIS project
expectations and
acceptance criteria



ITS / MIS project scope description

We help people move

Preparation of Project Plan

A Project Management Consultant may be hired at any stage of ITS/MIS Project Planning/ Designing/ Implementation

Chapter 4: Design the ITS / MIS Project

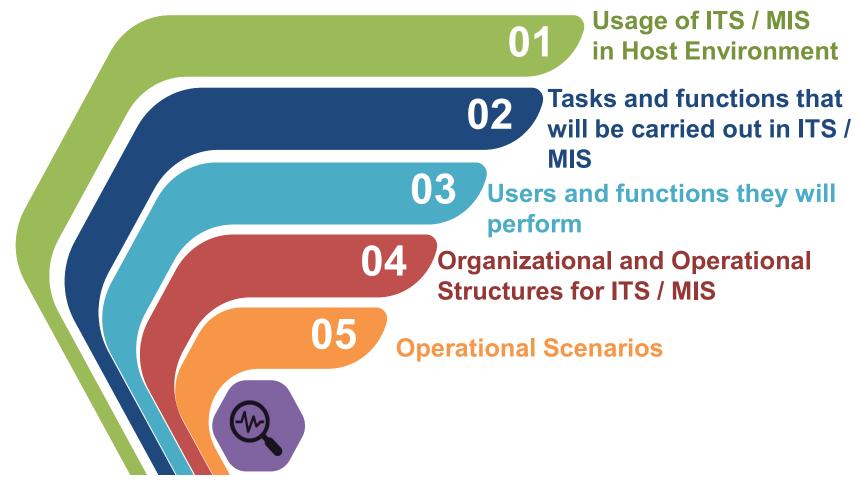
Overview of Designing ITS / MIS Project

- **1.Assessment of Business Processes**
- 2. Developing Concept of Operations
- 3. Preparation of Functional Requirements Specifications
- 4. Defining Technical Solution
- **5. Capacity Gap Assessment**
- **6.Identification of Business Model**
- 7. Estimation of Cost of ITS / MIS Project
- 8. Risk Identification and Mitigation Strategy
- **9.Selection of Systems Integrator**

Assessment of Business Processes

Identification of processes

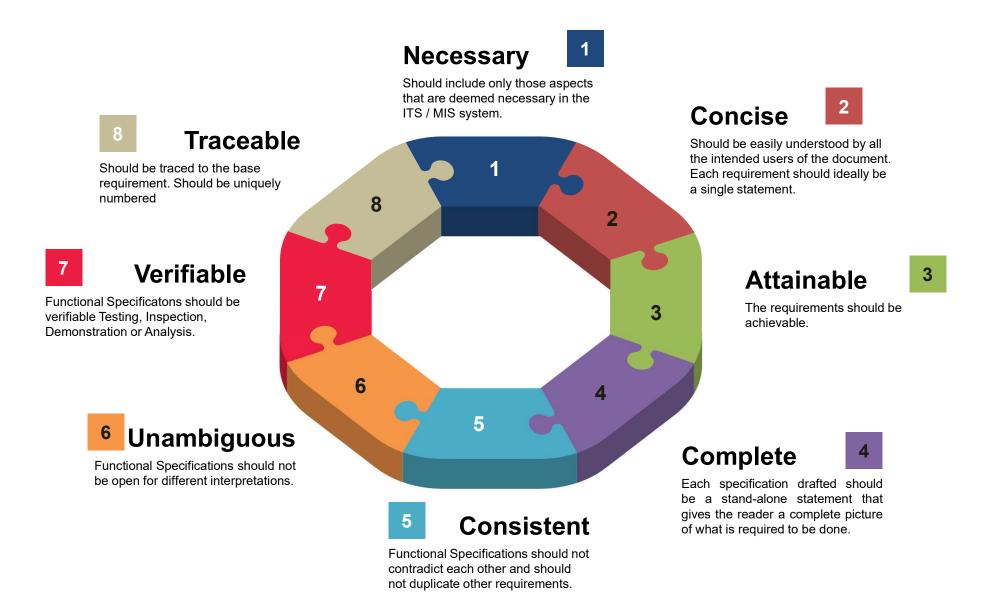
AS IS Assessment **GAP Analysis**


TO BE state finalization

Orafting reengineered process Stakeholder consultation and finalization of TO BE processes

ITS/MIS Project offers an opportunity to look into and change the business processes

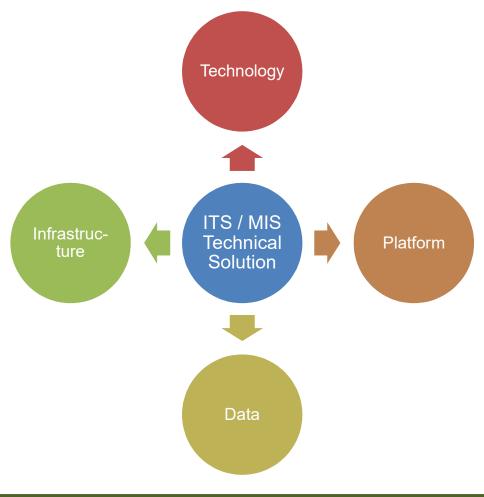
Development of Concept of Operations



CONCEPT OF OPERATIONS DOCUMENT

- Preparation of the Concept of Operations document how tasks will be achieved by a combination of personnel, technology, organizational structure and processes
- Will be the base document for preparing the functional specfications

Preparation of Functional Specifications



Defining the Technical Solution

Importance of identifying appropriate technical solution

Decision on advanced technical solution or a low cost solution that meets requirements

Defining the solution with interoperability and scalability requirements

Cost

Identification of Business Model

Build, Operate and Transfer (BOT) and its variants

ITS as a Service

Capex-Opex

Selection Criteria for Business Model

- ✓ Scale and Complexity of ITS/ MIS Project
- ✓ Availability funding for the ITS / MIS project
- ✓ Capacity on part of PT
 Agency to manage the ITS /
 MIS project
- ✓ Risk distribution and ability of the PT Agency to bear the project risks

Preparing Cost Estimates

Capital Cost

Operation and

Maintenance

Cost

Availability of Funds for Implementing ITS / MIS

Importance of estimating the cost for entire project life-cycle.

Necessity to consider cost related to site preparation, support infrastructure etc.

ITS / MIS

Project Life

Cycle Cost

Approach to be adopted for costing based on different business models

Cost of procurement of Hardware and Software and installation / deployment

Site preparation, support infrastructure, PMC Fees etc.

Financing Cost, if applicable

Fixed costs e.g., Fees to Systems Integrator

Cost Towards Internal Project
Management Team

Recurring Cost towards management of ITS / MIS project

Preparation and approval of budget for ITS / MIS

DPR and Selection of Systems Integrator

Consolidation of output from Design Stage in a DPR

Model Request For Proposals (RFPs)

- Capex-Opex Model
- BOT Model
- ITS-as-a-Service Model

Guidance on choosing Domestic Competitive Bidding vs. International Competitive Bidding

Guidance note on preparing:

- Pre-qualification criteria
- Technical evaluation and qualification criteria
- Technical evaluation methodology (Least Cost Selection, QCBS)

Chapter 5: Implementation and Evaluation of ITS / MIS Projects

Implementation and Evaluation of ITS / MIS Project

Project Governing Structure

Project Steering Committee

Project Monitoring Committee

Project Manager

- Composition of the Project Steering Committee and Project Monitoring Committee
- Role and Responsibilities of the committees and Project Manager in Project Governance
- Stage at which the committees have to be constituted
- All stakeholders to be involved in Project
 Governance

Making the Environment Ready

Environment

- Site for Command and Control Center.
- Site for setting up Data Center.
- Site for setting up Disaster Recovery Centre.
- Bus Terminals / Bus Stations, Depots, Workshops, etc.
- Availability of Buses
- Electricity and back-up
- Identification of Users for training

Aspects to be considered

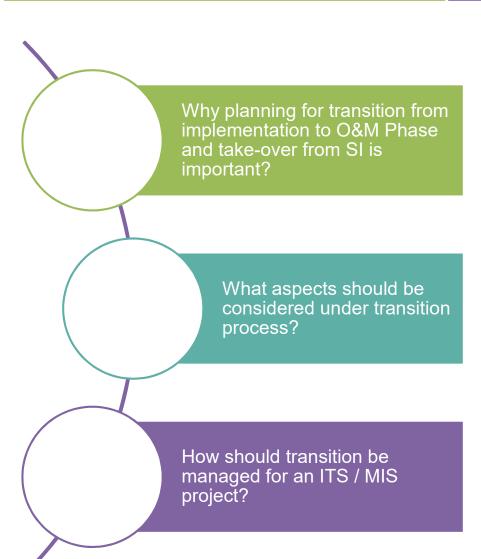
- Non-availability of adequate physical space.
- Captive Data Center vs. Cloud Based.
- Ownership of Bus Stops / Bus Terminals.
- Availability of buses in adequate condition for installation of ITS equipments.
- Availability of staff to be trained on ITS / MIS without affecting the day to day operations.

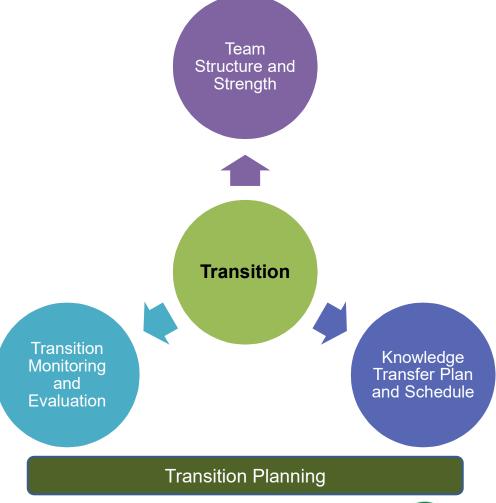
Risks associated with not getting the environment ready in time

Testing and Acceptance

Importance of establishing adequate testing and acceptance procedure

Necessity of having a clear and unambiguous acceptance, pass / fail criteria and the role of PT Agency and SI in testing and acceptance procedure

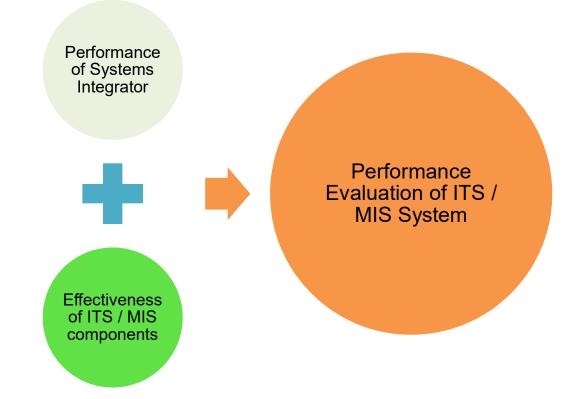

Caution to be exercised in specifying testing and acceptance criteria

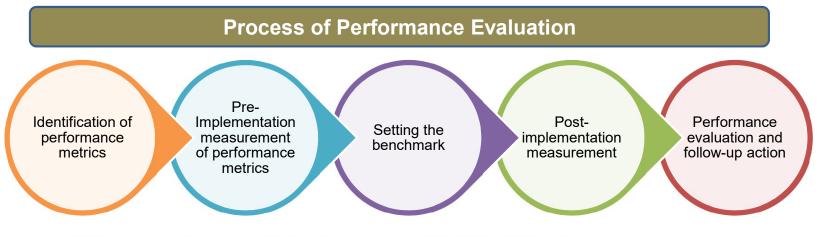


Transitioning from Implementation to O&M Phase

Implementation to O&M

O&M to SI Exit





Evaluation of the System

Two Aspects of Evaluation

- Importance of conducting periodic evaluation
- Identification of right performance metrics
- Importance of drawing a followup action plan after each evaluation exercise

Thank You

