ASSESSMENT OF FREIGHT VEHICLES CHARACTERISTICS: THE CASE OF DELHI

Leeza Malik

Geetam Tiwari

Ashwani Kumar

TRIPP Indian Institute of Technology, Delhi

Outline

- Introduction
- Data collection and methodology
- Results
- Main findings and Way forward

Introduction

- Efficient freight movements backbone of economy
- NTDPC (2014) estimates freight activity:

Policy Environment freight vehicles-Nationwide

Timeline Emission standards- India

Chronology of emission standards for heavy duty vehicles- India

Motivation

- Paucity of freight characteristics in spite of vital contribution of the freight vehicles:
 - Travel activities (Annual Kilometre driven)
 - Age distribution
 - Fuel distribution
 - Fuel economy

 $E_{p,v,a,f} = Vehicle in use_{v,a} x S_f x VKT_{v,a} x FE_{v,a,f} x P_{p,f}$ (Emissions CO₂)

Fuel economy

The Case of Delhi

- Unfortunately known to be among 20 world's most polluted cities of the world (WHO, 2016)
- Pollution by freight vehicles cause of concern
- Documented and published results on the passenger vehicle characteristics
- Pollution estimates for freight vehicles borrowed assumptions

Freight oriented Policies- Delhi

Time Restriction

Non Destined external freight vehicles prohibited

Pollution tax
External to Internal freight

Objectives

- Fleet Characteristics
 - a) Age distribution
 - b) Fuel economy
 - c) Fuel type distribution
- Volume and travel activity

Focus External to Internal freight transport

a) percentage of non-destined freight vehicles

b) vehicle kilometre travelled in Delhi

- c) Percentage of the empty non-destined trips
- d) Entry/Exit patterns of the non-destined trips.
- Freight trip attraction model

Methodology

Cordon Inventory

- 72-hour manual traffic counts
- Origin and destination
 (O&D) surveys (6865
 samples collected)
 - Vehicle registration number
 - Vehicle type
 - Fuel used
 - Model year
 - Ownership
 - Odometer reading
 - Fuel mileage
 - Commodity carried
 - Origin and destination zones
 - Exit locations
 - Fuel sales data

Details of Surveyed locations

External freight flow analysis of Delhi

57,500 external annual average daily freight traffic is observed.

- 38% of the medium commercial vehicles (3.5 to 7.5 tonne)
- 19% of 3-axle trucks
- 14% of light commercial vehicles

Distribution of vehicle as per the registration

Why Necessary?

Destined vs. Non-Destined vehicles

- 19% HCV of the total freight traffic entering is non destined to Delhi
- 2,40,539 vehiclekilometre is driven in Delhi by non-destined vehicles daily.

			Dest	ined t	o Outs	ide D	elhi	Trips	Matri	x As	per p	er its	In ar	nd Ou	ıt Poi	nt				
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	5A	15	16	17	18	Total IN
1	0	23	0	16	95	0	0	0	0	19	5	0	0	0	0	1	2	32	0	193
2	11	0	0	0	25	0	1	0	104	0	1	0	0	0	0	0	0	0	0	142
3	0	5	0	0	7	0	0	0	0	5	3	0	0	0	0	0	2	0	0	22
4	2	17	0	0	55	0	0	0	1	0	1	10	0	0	0	6	0	0	0	92
5	5	40	1	91	1	1	0	0	1	0	0	0	0	0	0	0	2	0	0	142
6	0	2	0	1	16	0	0	0	Ō	0	1	0	0	0	0	2	0	0	0	2
7	5	2	1	0	0	0	0	0	0	0	0	0	0	0	0	17	0	0	0	2
8	0	0	0	1	0	4	0	0	19	0	0	0	0	0	0	0	0	0	0	2
9	1	89	0	64	3	0	0	25	0	0	0	0	0	0	0	0	1	0	0	18
10	9	0	0	30	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
11	1	5	1	9	3	0	0	0	0	2	0	1	1	0	0	0	0	1	1	2
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
13	21	0	12	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
14	0	2	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
5A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
15	4	0	0	8	1	0	2	0	0	0	0	0	0	0	0	0	11	1	0	2
16	22	3	1	4	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0	3
17	8	2	0	49	1	0	0	0	0	0	2	0	0	0	0	0	0	0	0	6
18	2	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	
Total Out	91	190	16	275	212	6	3	25	125	27	15	11	1	0	0	26	18	34	1	1076

			Distan	ce(K	(ms) N	Aatrix	x As	pe	r pe	r it	s In	and	l Oı	ıt P	oin	t				
- 1		1	2	3	4	5	6	7	8	9	10	11	12	13	14	5A	15	16	17	18
	1	0	54	32	52	44	58	50	55	48	37	29	35	32	21	0	48	39	40	58
	2	54	0	51	32	23	29	35	З	11	27	32	27	31	62	0	27	16	16	64
	3	32	51	0	34	45	91	35	52	0	42	39	41	42	24	0	48	47	48	25
И	4	52	32	34	0	32	11	3	32	33	38	35	36	38	51	0	37	29	30	38
	5	44	23	45	32	0	31	35	25	14	9	14	9	12	58	0	24	7	8	64
	6	58	29	91	11	31	0	10	28	27	36	37	35	38	60	0	34	27	27	41
	7	50	35	35	3	35	10	0	38	39	38	36	35	39	48	0	37	30	31	34
	8	55	3	52	32	25	28	38	0	12	28	32	27	31	65	0	28	16	17	61
	9	48	11	0	33	14	27	39	12	0	20	23	19	23	58	0	18	7	7	62
	10	37	27	42	38	9	36	38	28	20	0	6	1	4	47	0	5	12	12	63
	11	29	32	39	35	14	37	36	32	23	6	0	5	4	44	0	11	17	17	59
	12	35	27	41	36	9	35	35	27	19	1	5	0	4	48	0	6	13	13	58
	13	32	31	42	38	12	38	39	31	23	4	4	4	0	42	0	9	15	16	62
	14	21	62	24	51	58	60	48	65	58	47	44	48	42	0	0	57	52	53	53
	5A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	48	27	48	37	24	34	37	28	18	5	11	6	9	57	0	0	8	9	65
	16	39	16	47	29	7	27	30	16	7	12	17	13	15	52	0	8	0	1	60
	17	40	16	48	30	8	27	31	17	7	12	17	13	16	53	0	9	1	0	58
	18	58	64	25	38	64	41	34	61	62	63	59	58	62	53	0	65	60	58	0

Commodity Delivered External freight trips

	Trip Distribution As per Commodity Type	
S.no	Type of Commodity	% share
1	FOOD GRAINS / PUILSES & SPICES	4 72%
2	MILK. FRUITS & VEGETABLES	10.87%
	······, ······························	
3	PROCESSED /PACKAGED FOOD / EDIBLE OIL	3.20%
4	COTTON / CLOTHING or SYNTHETIC YARN / FIBRES	2.18%
5	TEXTILES / CLOTHING / READYMADE GARMENTS	1.37%
6	LEATHER PRODUCTS	0.13%
7	HANDICRAFTS	0.01%
8	PETROLEIM PRODUCTS / HSD / PETROL	1.94%
9	MINERALS and ORES	1.06%
10	IRON & STEEL (ALUMINUM or METAL) ROAD / BARS / SHEETS	7.27%
11	METAL SETRAP	0.16%
12	TIMBER / WOOD and PRODUCTS	2.08%
13	PAPER/PARCEL	4.30%
14	COKE / COAL	0.57%
15	AUTOMOBILES & AUTO SPARE PARTS	1.86%
16	MACHINES & AUTO SPARE PARTS	1.30%
17	RUBBER / PLASTICS	2.68%
18	TYRES	0.38%
19	CHEMICALS / FERTILIZERS	0.84%
20	PHARMACEUTICAL PRODUCTS	0.50%
21	BUILDING MATERIALS	13.66%
22	ELECTRONIC / COMPUTERS/ ELECTRICAL APPLIANCES	1.41%
25	OTHERS	4.60%
24	FMPTY	32 89%

Why Necessary?

۲

- Empty Trips: Inefficient freight distribution
- If commodity daily purpose—lost VKm compensation by other mode

84% Destined to Delhi

Age Distribution

Fuel Economy (km/l)

Based on Drivers' experience

	A.v.a	Fuel economy	(Km/Litor)	of Diocal Vah	iclo Accord	ing to thoir A	60		i contra c
S No	Avg.			or Dieser ven	Vehicle	ing to their F Type	ige		
5.110	Age of Venicie	Goods	Lcv Type-	Lcv Type-	2 Axle	3 Axle	Multi Axle	Multi Axle	Tract
		Auto	1	2	Truck	Truck	Truck (4-6	Truck (> 6	or
		1		l			Axle)	Axle)	with
			1	I					Traile
		l i	i		I				r
1	<= 2 years	14.06	8.33	15.03	3.56	3.36	3.08	-	6.33
2	2 to 4 years	12.06	7.87	12.02	3.46	2.96	2.99	2.00	5.38
3	4 to 6 years	12.14	7.80	11.84	3.08	2.82	2.78	-	5.38
4	6 to 8 years	13.50	7.81	11.22	3.06	3.15	2.98	-	5.00
5	8 to 10 years	10.00	7.58	10.84	2.90	3.01	2.83	-	4.80
e	i 10 tpo 12 years	-	7.56	10.43	2.68	2.67	2.94	-	4.50
7	12 tp 15 years	<u> </u>	7.15	9.41	2.26	2.48	2.12	-	-
8	B > 15 year (if any)	_	7.25	9.75	2.50	2.00	-	-	-
	Average	13.08	7.87	<u> </u>	3.15	3.01	2.90	2.00	5.28
				·	\				

Fuel economy decrease observed in LCV

No clear relationship with age observed for HCV

External to Internal freight trips attraction models

- MCD 12 Zones-272 wards
- Preliminary Analysis
 - Civil line- Dairy and wholegrain; Centre to Wazir pur industrial area, Azad Pur Fruit Market, Rajasthan Udyog Nagar
 - Nazafgarh-Metal and timber products

Source: http://alpha.mapmyindia.com/mcdApp/

External to Internal freight trips attraction models Contd.

Dependent Variables	Independent Variables	
Total freight trips attracted per day per hectare area of the ward	Number of Industries per hectare of the ward area	
	Shopping area (in ha) per unit hectare of the ward area	
	Residential density (Population per hectare area of the ward)	Proxy variable to the floor area of
		industries per ward

Table: Results of Linear Regression Model

Independent parameters	Coefficient	Significance (p-value)
Constant	0.708	.153
Number of industries per unit ward area in ha	0.079	.017 95% significance
Shopping area(ha) per unit ward area in ha	.132	.080 90% significance
Residential density	8.98E-005	.881

External to Internal freight trips attraction models Contd.

Thematic map showing the relation between external trips attracted per unit ha and number of industries per ha

M

Major findings and Way forward

Benchmark freight characteristics

- A total of 57,500 annual average daily freight vehicles (38% Medium Commercial Vehicles share highest proportions)
- 19% of the HCVs and MCVs are non-destined
- 2,40,539 vehicle-kilometre is driven in Delhi by non-destined freight vehicles daily
- 33% empty freight vehicles is entering in Delhi: 84% destined to Delhi
- 10% freight vehicles older than 10 years
- Fuel economy loss of 13%, 35%, 30%, 40%, 31% with age is observed in case of Lcv Type-1, Lcv Type-2, 2-axle, 3-axle, Multi-axle vehicle respectively.
- "number of industries per ha" is found to significant at 95% significance level.
- Subsequent work: Contribution of emissions for External freight vehicles

Ţ

References

- Apelbaum, J. (2009) 'A case study in data audit and modelling methodology—Australia', *Energy Policy*. Elsevier, 37(10), pp. 3714–3732.
- Baidya, S. and Borken-Kleefeld, J. (2009) 'Atmospheric emissions from road transportation in India', *Energy Policy*. Elsevier, 37(10), pp. 3812–3822.
- Bastida, C. and Holguin-Veras, J. (2009) 'Freight generation models: comparative analysis of regression models and multiple classification analysis', *Transportation Research Record: Journal of the Transportation Research Board*. Transportation Research Board of the National Academies, (2097), pp. 51–61.
- Clark, N. N., Kern, J. M., Atkinson, C. M. and Nine, R. D. (2002) 'Factors affecting heavy-duty diesel vehicle emissions', *Journal of the Air* & *Waste Management Association*. Taylor & Francis, 52(1), pp. 84–94.
- EPCA, (2015). Report on strategies to reduce air pollution from trucks entering and leaving Delhi. Centre for Science and Environment. Available at: <u>http://cseindia.org/userfiles/EPCA%20Report%20(October%202015).pdf</u>
- EPCA, (2004). Special report on the non-destined transit trucks using Delhi. Available at: cpcb.nic.in/divisionsofheadoffice/pci3/Truck_report_No_12.doc

E

- Goel, R. and Guttikunda, S. K. (2015) 'Evolution of on-road vehicle exhaust emissions in Delhi', *Atmospheric Environment*. Elsevier, 105, pp. 78–90.
- Goel, R., Guttikunda, S. K., Mohan, D. and Tiwari, G. (2015) 'Benchmarking vehicle and passenger travel characteristics in Delhi for onroad emissions analysis', *Travel Behaviour and Society*. Elsevier, 2(2), pp. 88–101.
- Government of NCT of Delhi (2016) *No Title*. Available at: https://delhitrafficpolice.nic.in/wp-content/uploads/2016/03/GNCTNotification.pdf.
- Goyal, P., Mishra, D. and Kumar, A. (2013) 'Vehicular emission inventory of criteria pollutants in Delhi', *SpringerPlus*. Springer International Publishing, 2(1), p. 216.
- Gurjar, B. R., Van Aardenne, J. A., Lelieveld, J. and Mohan, M. (2004) 'Emission estimates and trends (1990–2000) for megacity Delhi and implications', *Atmospheric Environment*. Elsevier, 38(33), pp. 5663–5681.
- Guttikunda, S. K. and Goel, R. (2013) 'Health impacts of particulate pollution in a megacity—Delhi, India', *Environmental Development*. Elsevier, 6, pp. 8–20.

References

- Guttikunda, S. K. and Kopakka, R. V (2014) 'Source emissions and health impacts of urban air pollution in Hyderabad, India', *Air Quality, Atmosphere & Health*. Springer, 7(2), pp. 195–207.
- Guttikunda, S. K. and Mohan, D. (2014) 'Re-fueling road transport for better air quality in India', *Energy Policy*. Elsevier, 68, pp. 556–561.
- Holguín-Veras, J., Jaller, M., Destro, L., Ban, X., Lawson, C. and Levinson, H. (2011) 'Freight generation, freight trip generation, and perils of using constant trip rates', *Transportation Research Record: Journal of the Transportation Research Board*. Transportation Research Board of the National Academies, (2224), pp. 68–81.
- Jain, S., Aggarwal, P., Sharma, P. and Kumar, P. (2016) 'Vehicular exhaust emissions under current and alternative future policy measures for megacity Delhi, India', *Journal of Transport & Health*. Elsevier, 3(3), pp. 404–412.
- McKinnon, A. C. and Piecyk, M. I. (2009) 'Measurement of CO 2 emissions from road freight transport: a review of UK experience', *Energy policy*. Elsevier, 37(10), pp. 3733–3742.
- Nagpure, A. S., Sharma, K. and Gurjar, B. R. (2013) 'Traffic induced emission estimates and trends (2000–2005) in megacity Delhi', *Urban Climate*. Elsevier, 4, pp. 61–73.
- National Transport Development Policy Committee (NTDPC) (2014) *India Transport Report: Moving India to 2032*. Routledge 912 Tolstoy House, 15–17 Tolstoy Marg, Connaught Place, New Delhi 110 001, New Delhi.
- Planning Commission, 'Government of India.(2013). Twelfth five year plan (2012-2017). Faster, more inclusive and sustainable growth. Vol. I'. SAGE Publications India Pvt Ltd., New Delhi.
- Ramachandra, T. V (2009) 'Emissions from India's transport sector: Statewise synthesis', *Atmospheric Environment*. Elsevier, 43(34), pp. 5510–5517.
- Sánchez-Díaz, I., Holguín-Veras, J. and Wang, X. (2016) 'An exploratory analysis of spatial effects on freight trip attraction', *Transportation*. Springer, 43(1), pp. 177–196.
- Schipper, L. (2011) 'Automobile use, fuel economy and CO 2 emissions in industrialized countries: encouraging trends through 2008?', *Transport Policy*. Elsevier, 18(2), pp. 358–372.
- Sovacool, B. K. and Brown, M. A. (2010) 'Twelve metropolitan carbon footprints: A preliminary comparative global assessment', *Energy policy*. Elsevier, 38(9), pp. 4856–4869.
- WHO (2016) WHO's Ambient Air Pollution database . Available at: http://www.who.int/en/ (Accessed: 1 December 2016).

References

- Zachariadis, T. (2006) 'On the baseline evolution of automobile fuel economy in Europe', *Energy Policy*. Elsevier, 34(14), pp. 1773–1785.
- Zachariadis, T., Ntziachristos, L. and Samaras, Z. (2001) 'The effect of age and technological change on motor vehicle emissions', *Transportation Research Part D: Transport and Environment*. Elsevier, 6(3), pp. 221–227.