

ber ibent unt

Paper ID: 122

Pedestrians' Behavioral Analysis Through Critical Gap At Un-Signalized Unmarked Midblock Crossing In Delhi

Ravi Kant^a and Mukti Advani^b

^a Research Scholar, Centre for Transportation Systems (CTRANS), IIT Roorkee ^b Principal Scientist, Transportation Planning & Environment Division, CSIR-CRRI, Delhi

Research Symposium 5: Vulnerable Road Users (VRUs) and Inclusive Mobility 29 October 2023

Delhi

Introduction

- Walking is still regarded as a universal mode of transportation, especially for start and the end of a trip
- Inadequate urban transportation facilities, especially for most vulnerable road users such as pedestrians & bicyclists

15% of total

Source: India Tv News (2021)

 Provision of adequate pedestrian infrastructure, such as sidewalks and crossing facilities, is required to promote walkability in an urban area

- Higher waiting times at intersections, sometimes, lead to pedestrians crossing through un-signalized crosswalks, such as mid-block locations (between two intersections)
- The fatalities in urban areas have reached up to 60%, of which 85% occur at un-signalized midblock crosswalks (Kadali and Vedagiri, 2016)
- Pedestrian gap acceptance behavior becomes more critical at un-signalized, unmarked midblock crossings due to complex interactions of pedestrians with moving vehicles
- The gap acceptance theory evaluates the safety performance at uncontrolled intersections and unsignalized pedestrian crossings (Pawar and Patil, 2016)
- The critical gap is an essential parameter in exploring the gap acceptance behavior, which is the minimum time gap below which pedestrians do not attempt to cross the road (US-HCM, 2010)
- These behavioral differences may depend on pedestrians' characteristics such as gender, age, and platoon size (group size) while crossing (Kadali and Vedagiri, 2016) (Pawar and Patil, 2016)

Need of the study

- Existing literature has very limited studies to estimate critical gaps, especially at un-signalized unmarked midblock crossings for pedestrians in the Indian scenario
- Micro-level behavior (through the pedestrians' gap acceptance) need to be studied to improve pedestrians' safety at un-signalized and unmarked mid-block crossings
- the most suitable critical gap estimation method must be identified in the Indian scenario dealing with multiple-sized vehicles and space-sharing-based vehicular movement

Study objectives

- To estimate and compare the critical gaps for pedestrians crossing individually and in a group at the un-signalized midblock section based on Clearing time, Greenshield's, Raff's, and Harder's methods
- To explore the perceived risk of crossing pedestrians at the un-signalized mid-block section under study

Study area

- An un-signalized (non-functional traffic signal) unmarked pedestrian midblock crossing was selected on Mathura Road, New Delhi, in India
- Though this is on a six-lane divided National Highway, the functionality of this road is more of an urban arterial road in nature

Midblock section on Mathura Road, New Delhi (Source: Author)

- A two-hour video recording survey was conducted for morning and evening peak times (4:00 pm to 6:00 pm and 8:00 am to 10:00 am) on working days in average weather conditions in September
- A single camera was fixed and positioned on a tripod and extended up to 10 m in height in such a way that it could be able to record vehicular and pedestrian characteristics
- The collected video was run using Dartfish software at a slower speed and horizontal reference line is drawn using the command "Line" provided in the software to determine the vehicular gaps

Midblock section (Source: Author)

time (t_1) : the rear bumper of the leading vehicle touching the reference line *time* (t_2) : the front bumper of the following vehicle touching the reference line

 $t_2 - t_1 =$ vehicular gap

3126 vehicular gaps (accepted and rejected) involving 635 pedestrians

Collected data/information

Variable type	Variable name	Description	
Gender	Gender: Male, Female	Based on their appearance	
Crossing Patterns	Perpendicular: Yes or No	Whether pedestrians crossed perpendicularly to the road or no	
	Angular: Yes or No	Whether pedestrians crossed angularly to the road or not	
Pedestrian Behavioural Characteristics	Rolling gap: Yes or No	Whether pedestrians roll over the road to accept the gaps or not	
	Running: Yes or No	Whether pedestrians run over the road to cross or not Number of pedestrians in a group	
	Pedestrian group size: 1, 2, 2-4, 4-7, >7		
Vehicle Characteristics	Vehicles type: 2, 3,4-wheelers	Vehicles type during accepted and rejected gap/lag	
Traffic Characteristics	Waiting time	Waiting time of pedestrians in seconds to accept gap/lag	
	Crossing time	Pedestrian crossing time in seconds	
	Vehicular gap size	Time difference of vehicles reaching reference line (in seconds)	
	Accepted/rejected gap size in seconds	Whether pedestrians accept/reject gap/lag	

Methods	Critical gap
Raff	Intersection point in the frequency distribution of accepted and rejected gap sizes of pedestrians
Greenshield	Gap size corresponding to equal value of cumulative percentage of accepted and rejected gap sizes in the frequency distribution of accepted and rejected gap sizes of pedestrians
Harder	Gap size corresponding to 50% cumulative gap number in the frequency distribution of accepted and rejected gap sizes of pedestrians
Clearing Time	Gap corresponding to the intersection point of cumulative percentage of accepted gap size and (100-cumulative percentage) of Clearing time of pedestrians

- Critical gaps using Greenshield's, Raff's, and Harder's methods were low
- Most critical gaps calculated using these three methods are close to the reaction time of drivers (2 seconds) as per Indian Road Congress
- Critical gaps using the Clearing time method were observed to be high

Estimated critical gaps (second	d) for morning peak
---------------------------------	---------------------

Group size	Clearing time	Greenshield	Raff	Harder
1	5.5	2.8	3.0	4.0
2	5.3	3.0	3.0	4.1
2-4	6.1	2.5	2.8	3.4
4-7	7.2	2.5	3.0	5.8
>7	8.1	2.9	2.8	6.2

Estimated critical gaps (second) for evening peak

Group size	Clearing time	Greenshield	Raff	Harder
1	5.6	2.0	2.4	2.4
2	6.4	2.7	3.0	5.1
2-4	7.0	2.5	3.2	4.1
4-7	6.8	2.5	2.8	3.8
>7	6.4	2.2	2.7	4.2

- Clearing time method considers pedestrians' clearing behavior and zig-zag pattern while crossing
- Therefore, based on the study findings and the existing literature, the Clearing Time method is appropriate for calculating critical gaps for a heterogeneous traffic flow with no proper lane discipline, especially for cities of developing nations

Risk taking behavior while crossing

- The least critical gap, 5.3 seconds was considered to explore the risk-taking gap acceptance behavior of pedestrians while crossing
- Approximately 70% of total gap acceptance events were made with a vehicular gap size of less than the required critical gap of 5.3 seconds, involving about 67% of pedestrians. It indicates that these pedestrians (67%) crossed the road at risk

- 92 pedestrians (around 15%) crossed the road by running, indicating their risky crossing behavior due to the absence of adequate vehicular gaps
- 147 pedestrians (around 23%) crossed the road by rolling over it by accepting various smaller gaps in between

Crossing Patterns

- 127 pedestrians (20%) followed an angular pattern (oblique crossing) to cross the road,
- while 506 pedestrians (approximately 80%) crossed the road perpendicularly

- The Clearing time method was found appropriate to find critical gaps for heterogeneous traffic flow in cities of developing nations
- The study found approximately 67% of pedestrians were at risk while crossing the selected midblock location
- 15% of pedestrians were found crossing the road by running, indicating the unavailability of adequate vehicular gaps to accept
- The development authorities should provide well-maintained and working signals for pedestrians so that they can cross safely
- The methodology used in this study could be applied to other cities of developing countries to analyze the pedestrians' gap acceptance behavior at mid-block locations

References

- R. B. Kadali and V. Perumal, "Critical Gap Analysis based on Pedestrian Behavior during Peak-Hour Traffic at Unprotected Midblock Crosswalks," Asian Transp. Stud., vol. 4, no. 1, pp. 261–277, 2016, doi: 10.11175/eastsats.4.261.
- Ministry of Road Transport and Highways, "Road Accidents in India 2019," 2020, [Online]. Available: https://morth.nic.in/sites/default/files/RA_Uploading.pdf.
- US-HCM, Highway Capacity Manual. Washington, DC: Transportation Research Board of the National Academies, 2010.
- D. S. Pawar and G. R. Patil, "Critical gap estimation for pedestrians at uncontrolled mid-block crossings on high-speed arterials," Saf. Sci., vol. 86, pp. 295–303, 2016, doi: 10.1016/j.ssci.2016.03.011.
- G. Tiwari, S. Bangdiwala, A. Saraswat, and S. Gaurav, "Survival analysis: Pedestrian risk exposure at signalized intersections," Transp. Res. Part F Traffic Psychol. Behav., vol. 10, no. 2, pp. 77–89, 2007, doi: 10.1016/j.trf.2006.06.002.
- Serag. M.S, "Modelling pedestrian road crossing at uncontrolled mid-block locations in developing countries," Int. J. Civ. Struct. Eng., vol. 4, no. 3, pp. 274–285, 2014, doi: 10.6088/ijcser.201304010027.
- B. R. Kadali and P. Vedagiri, "Modelling pedestrian road crossing behaviour under mixed traffic condition," Eur. Transp. Trasp. Eur., no. 55, 2013.
- R. Ashalatha and S. Chandra, "Critical gap through clearing behavior of drivers at unsignalised intersections," KSCE J. Civ. Eng., vol. 15, no. 8, pp. 1427–1434, 2011, doi: 10.1007/s12205-011-1392-5.
- M. Mohan and S. Chandra, "Review and Assessment of Techniques for Estimating Critical Gap at Two-way Stop-controlled Intersections," Eur. Transp. - Trasp. Eur., vol. 8, no. 61, pp. 1–18, 2016.
- M. Mohan and S. Chandra, "Critical gap estimation at two-way stop-controlled intersections based on occupancy time data," Transp. A Transp. Sci., vol. 14, no. 4, pp. 316–329, 2018, doi: 10.1080/23249935.2017.1385657.
- M. Advani, N. J. Gupta, S. Velmurugan, E. Madhu, and S. Chandra, "Defining and Analyzing Forceful Gap Behavior at Unsignalized Intersections," Transp. Res. Rec., vol. 2674, no. 8, pp. 420–428, 2020, doi: 10.1177/0361198120925258.

Presenting Author:

Ravi Kant

Research Scholar Centre for Transportation Systems (CTRANS) Infrastructure Planning Lab Indian Institute of Technology Roorkee

rkant@ts.iitr.ac.in