16th Urban Mobility India Conference cum Exhibition 2023

### Using urban topology to identify critical links of the road network: a Centrality based approach



Aaditya Bhamidipati

Rahul TM

Navdeep Asija

### Contents

- Planned vs unplanned networks
- Network analysis measures
- Centrality
- Analysis
- Results and Discussion



Vector data of road network

### Planned vs unplanned urban networks



### Network analysis measures

- Density based Network density, Clustering coefficient
- Length based Average link length, Length distribution analysis
- Accessibility based Isochrone maps
- Connectivity based Centrality



# Centrality

- Centrality- measures the importance of node/edge within a network
- Used to identify key nodes/edges which aid in information transfer
- Urban road network nodes and links
- Can be node based or edge based.
- Betweenness centrality important to understand critical paths



Degree Centrality Source : www.sci.unich.it



# Betweenness centrality

 Quantifies the number of times a link acts as a bridge along the shortest path between two other links.

• 
$$C_B(v) = \sum \frac{\sigma_{st}(v)}{\sigma_{st}}$$

where  $\sigma_{st}$  is total number of shortest paths from nose s to node t, and  $\sigma_{st}(v)$  is the number of those paths passing through v



Edge based betweenness centrality Source: Wang & Tang, 2013

# Betweenness centrality and travel demand

- Betweenness depicts the importance of the link in the network
- Higher the betweenness, critical is the link for the flow of information(traffic).
- More important the link is, higher is the traffic flow, and hence, wider should be the road to accommodate the traffic.
- In the absence of traffic flow data, the current study understands whether road width and the criticality of the links in the network are correlated

#### Vector data

#### **Open Street Maps**

# Analysis





- Initial vector data extraction Open Street Maps (OSM)
- Vector data of Trunk, Primary, Secondary, Tertiary and residential merged
- Network cleaned for road centre lines, disconnectivities and irregular segments
- Cleaned data used in DepthMapX





# Centrality analysis

- The network is cleaned for stubs and irregularities manually
- Further stub removal performed using the DepthMapX plugin of QGIS
- This network data is used for the segment based Betweenness (choice) analysis using the DepthMapX software
- The values post analysis used for understanding correlation



A section of road network post analysis (lighter the colour, lesser is the betweenness)

# **Correlation Analysis**

- Network data calibrated with the width of road segments at link level
- Post analysis, all links defined by
  - Width of the road segment of all links &
  - Corresponding edge based betweenness centrality
- Correlation analysis performed to determine significance of relation between betweenness centrality and width of road network features

$$r = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2 \sum (y_i - \overline{y})^2}}$$

• Where  $x_i$  and  $y_i$  represent the values of variables x(width) and y(betweenness) in the sample and  $\overline{x}$ ,  $\overline{y}$  are the respective sample means

### Results and discussion

- Correlation between road width and betweenness 0.468
- p value <0.05 and t value 262 statistically significant.
- Interpreted in two ways
  - *High betweenness and low width of roads* the segments are important for the network topologically but are not emphasized in practice for widening.
  - Lower betweenness and higher width of roads, the identified links in the network can be used for alternative routing decisions

### Thank You