

Role of Ropeway in Providing Affordable Urban Mobility Solutions: Lessons from La Paz

Anil Kumar Gupta, IRSE

Director (Works)

Indian Port Rail Corporation Ltd, Mumbai

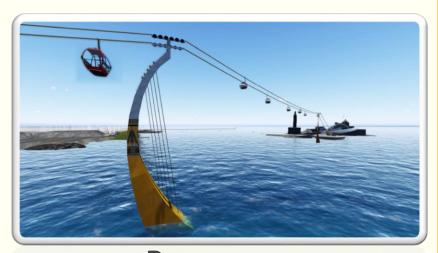
About IPRCL

- A first of its kind Joint Venture Company (JVC) between the Major Ports under the Ministry of Shipping and RVNL with the objective to provide efficient rail evacuation systems to Major Ports for enhancing their capacity and throughput.
- Building Multimodal Transit Systems like Ropeways.
- Building ROBs under Setu-Bharatam.

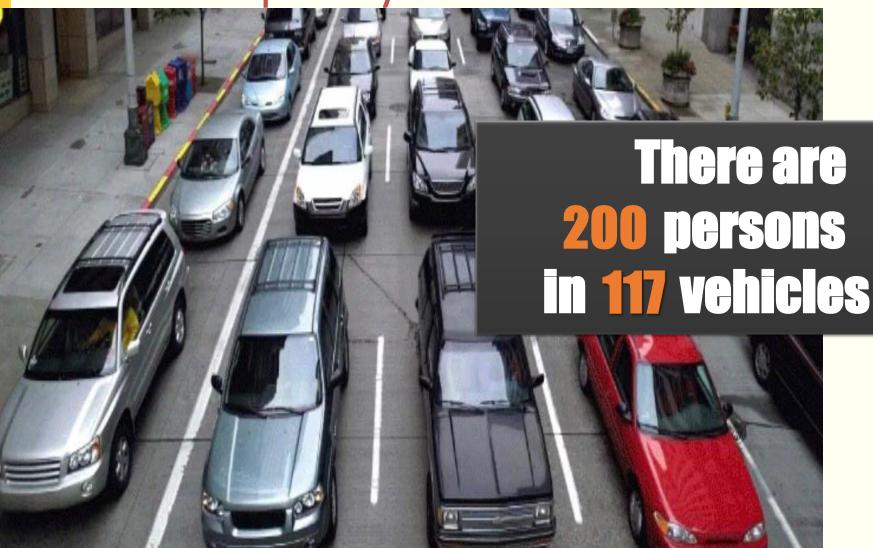
CIN No: U60300DL2015GOI282703

Registered Office: 1st Floor, South Tower, NBCC Place, Bhisham Pitamah
Marg, Lodhi Road, New Delhi - 110 003.

Corporate Office: 4th Floor, Nirman Bhavan, Mumbai Port Trust Building, M.P. Road, Mazgaon (E), Mumbai - 400 010. Tel.: 022-66566335, Fax No.: 022-66566336 website: www.iprcl.org


IPRCL's Operations

Road Over Bridges



Ropeways

11th Conference & Exposite Loading Platforms

Ropeway vs Other Modes

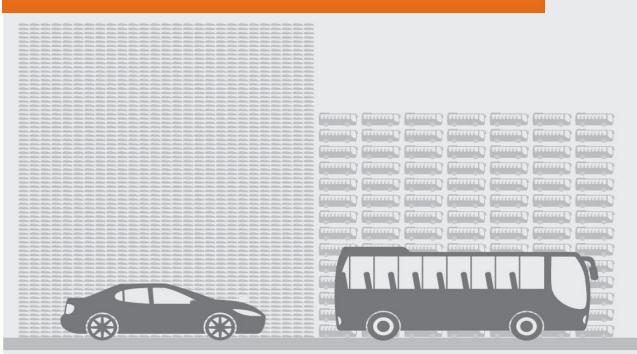
IN A TRAIN

COACH

IN THREE (3) Buses

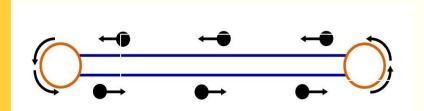
CYCLING

WITHOUT CARS

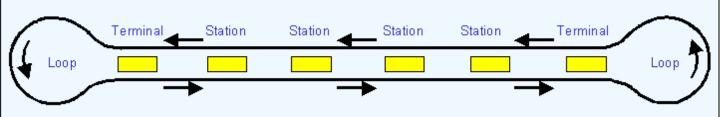


Ropeway Needs Minimum Road Space

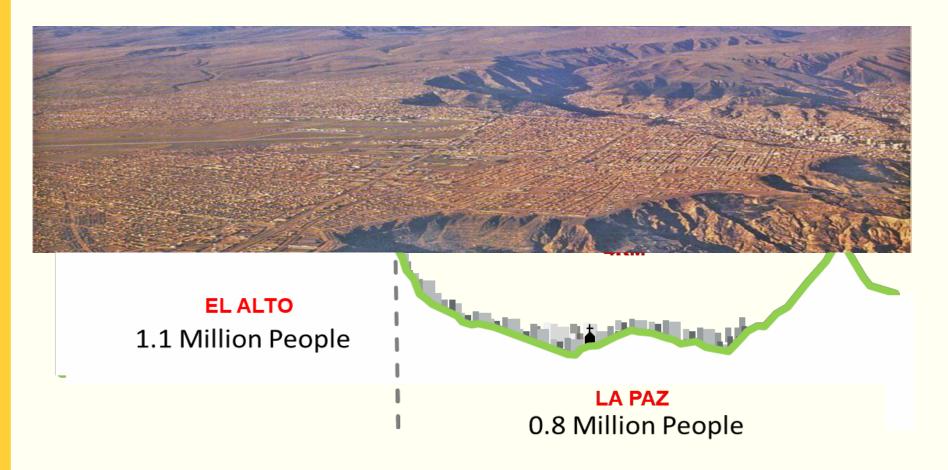
To Transport 10,000 passengers / hour (5,000 in each direction), you need:



2,000 100



It is a Simple System



The Twin City of La Paz and El Alto 3000 M Above MSL

Densely Populated City

With congested roads filled up with public taxis, vans, mini buses in downtown areas

City's Average Trip Time was Increasing

Average Trip Time:

1980: 18'

37' 2015:

51' 2030:

The speed of traffic:

2015: 3 km/h.

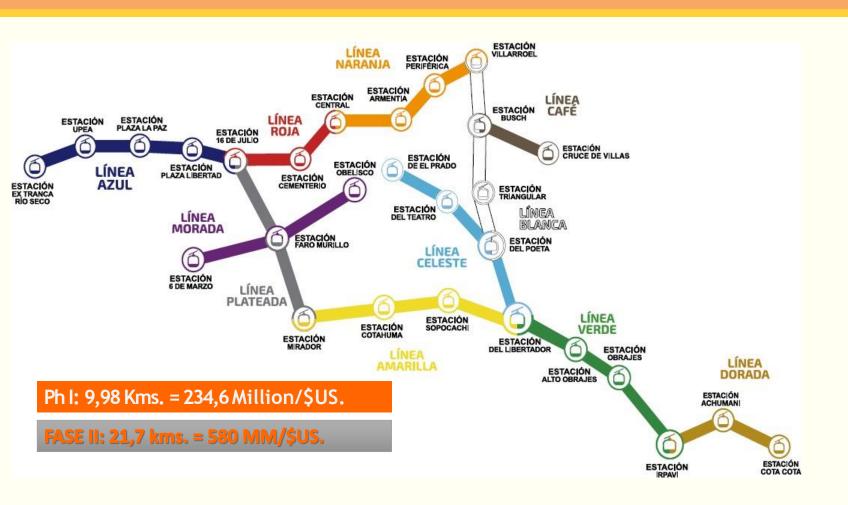
2030: 1.2 km/h.

Average speed of a pedestrian is

5km/h.

La Paz Ropeway System:

- Average Reduction in travel time of travel from 15 to 90 minutes
- Every Pass of the Red Line saved on average 16 days per year in just travel time
- Each Line runs at 6 km/hr with 4,000 pass/h


Since 2016 Ropeway System Brought Turnaround

The Complete Ropeway System


11 Line Network Capacity

Ropeway vs Metro on Center of City Roads

Metros Journey is of Hardship

Cable Car Journey is Joyful

It Promotes Social Inclusion

Urban Ropeway vs Metro

Metro	Ropeway
Best for Long Distance Travel	Best for Short 4-5 Km Travel
The Cost per additional Km for incremental ridership is higher	Highest value for money for moving incremental passengers
Long Lead Construction	18 Month Construction
Large Land Requirement	Only a fraction of Metro
Un-removable	Removable System except Station
Under-ground very costly	10% of u/g Metro

Decongesting Capacity of Mumbai Suburban

6 Lines	2342 Train Services (12 & 15 Coaches)	465 Km	
141 Stations (Western: 37, Central: 62, Harbour: 32	75 Lakhs Passengers Per Day	23 Hours per day	

701 Passengers per Hour per Km

Decongesting Capacity of Delhi Metro

6 Lines	2206 Coaches at end of Phase III Operationalization (333 trains)	231 Km
173 Stations	27.6 Lakhs Passengers Per Day (2016 – 17 Peak Day Capacity)	18. 5 Hours per day

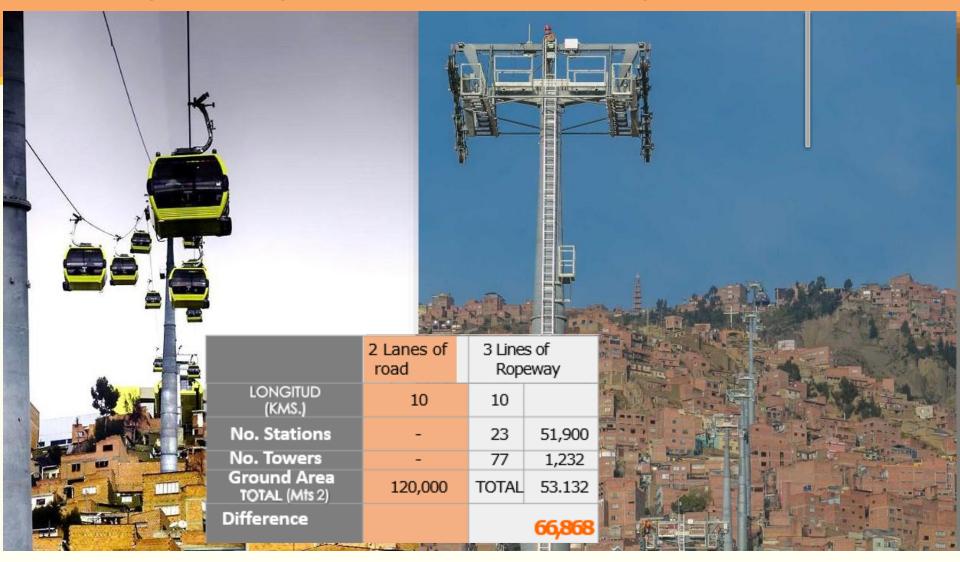
630 Passengers per Hour per Km

Decongesting Capacity of Ropeway is Higher

The Ropeway urban transit system is a 10 Seater Monocable Gondola Detachable (MGD) system

No of Lines	Status	People Per Day (Lakhs)	Network (km)	No of Stations	Operation s (hours)	PPH/km
1	Design Capacity	0.9	4	5	17	2250
La Paz	La Paz, Urban Ropeway System					
5	Current Ridership	2.79	17.3	20	17	950
5	Design Ridership	5.10	17.3	20	17	1734
4	Addl. Under Implementation	4.42	10.6	13	17	2452+
9	Total System Capacity	9.5	27.9	33	17	2225 ++

- For La Paz, with a population of 25 lakhs, the system has been designed at an average ridership capacity of 6,000 people per hour per line; the planned capacity for 9 lines is 62,000 people per hour;
- The system can be planned for 12,000 people per hour per line for cities with higher population
- Peak Hour flow is 1.5 times of peak hour peak direction flow and average day ridership is 10 times peak hour flow

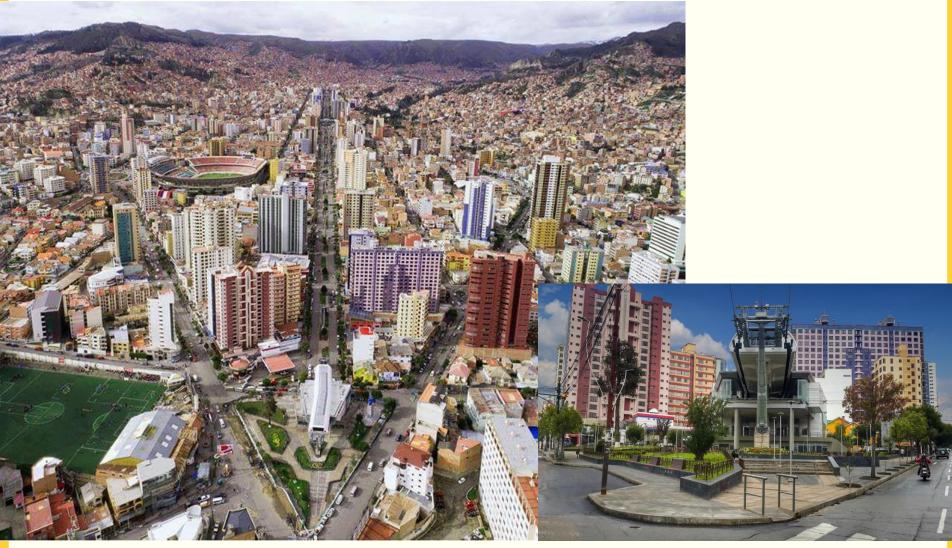

Typical Parameters for an Urban Ropeway

Parameter	Typical Value
Length	3-6 Km
Capacity	3,000 – 6,000 Pass/Hour/Direction
Cabin Capacity	10-30 Pass
Speed	5-6 m/s
Cabin Spacing	50-60 m, 10-12 second
Tower Spacing	90-140 m
Station Spacing	1.0-1.3 km
No. of Cabins Required	40-60 Cabins per Km
Land Area Required	1500-3000 Sq.m. per station

Ropeway is Urban Accupuncture

Underground Station Also Possible

Station on Bridge across Road


Station on a Road Island

Station on a Road Triangle

Easy Tower Installation even from Air

Much Cheaper than u/g Metro

No need for Operational Subsidy

100% Standbye Motor & Power Backup

For Un-interrupted Opeartion

Faster 18 Month Construction

Quick Application of Mobility Solution

Smaller Space Requirement for Car

Maintenance

Requires Legal Arial Rights to Operate above Houses

Ropeway can operate above built up areas in cities with a 1.5-4 m vert clearance and 2x15 m right of way against any infringement to Cabins

Best Urban Mobility Solution

Thanks

