

Government of India Ministry of Housing and Urban Affairs

Workshop on

Improving Fuel Efficiency of City Bus Services through ESMAP Approach in Select NURM Cities

Date 17.11.2019

By – Rakesh Agrawal Dy. Director (Transport) -PCRA

In This Workshop

- Problem Fuel Efficiency is Not at Optimum Level in Many City Bus Service
- Solution Fuel Efficiency Improvement Through Targeted Bus Maintenance and Targeted Driver Training (Methodology - ESMAP Approach)
- Demonstration Fuel Saving at Depots Who Volunteered for this Program

National HQ – New Delhi Northern Region –New Delhi

- Chandigarh
- Jaipur
- Lucknow
- Dehradun

Eastern Region – Kolkata

- Guwahati
- Bhubaneswar
- Patna
- Ranchi

Western Region - Mumbai


- Rajkot
- Ahmedabad
- Pune
- Nagpur
- Raipur
- Bhopal

Southern Region – Chennai

- Bangalore
- Vishakhapatnam
- Kochi
- Coimbatore
- Hyderabad

PCRA ACTIVITIES

MAIN FOCUS ON DEMAND SIDE MANAGEMENT(DSM)

PCRA

PCRA – Major Policy Initiatives

Fuel Economy Norms for Passenger Cars

Fuel Economy Norms for Light Medium and Heavy Commercial Vehicles

Standard and Labelling Program for Agriculture Tractors

Standard and Labelling Program for Tyres

Mandatory Fuel Efficient Driver Training for the Heavy Duty Vehicle Driving License

About ESCBS Project

Global Environment Facility Funded- Efficient & Sustainable City Bus Service (ESCBS) Project- initiative of Ministry of Housing and Urban Affairs (MoHUA) with support of World Bank.

Component-Improving Fuel Economy of City Bus Services Using ESMAP Approach

65 Cities under NURM Project 50% Cities covered under ESCBS project 34 depots Volunteered for Fuel Efficiency Program

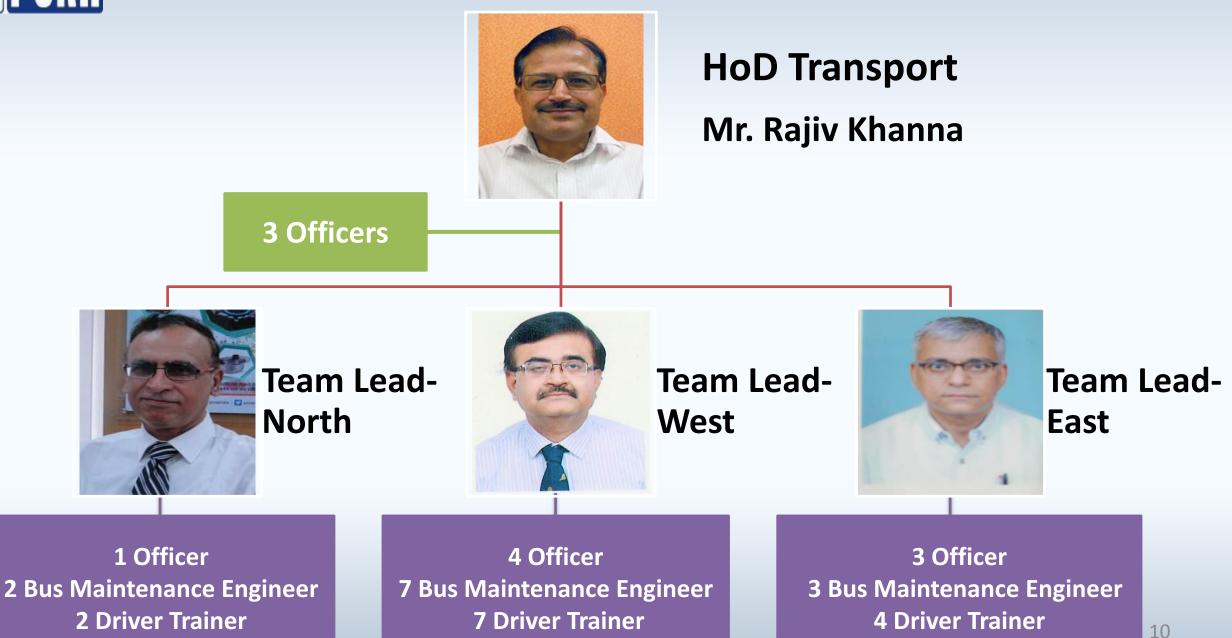
Brief About PCRA Program

Number of Buses – 2883

Number of Drivers – 5753

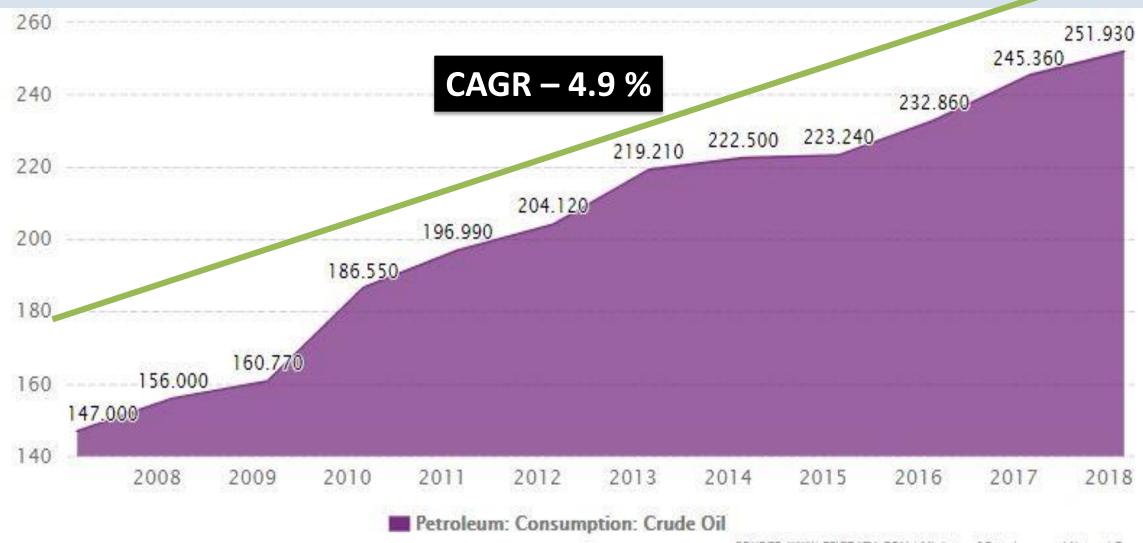
List of Bus Depots-Volunteered for Program

8

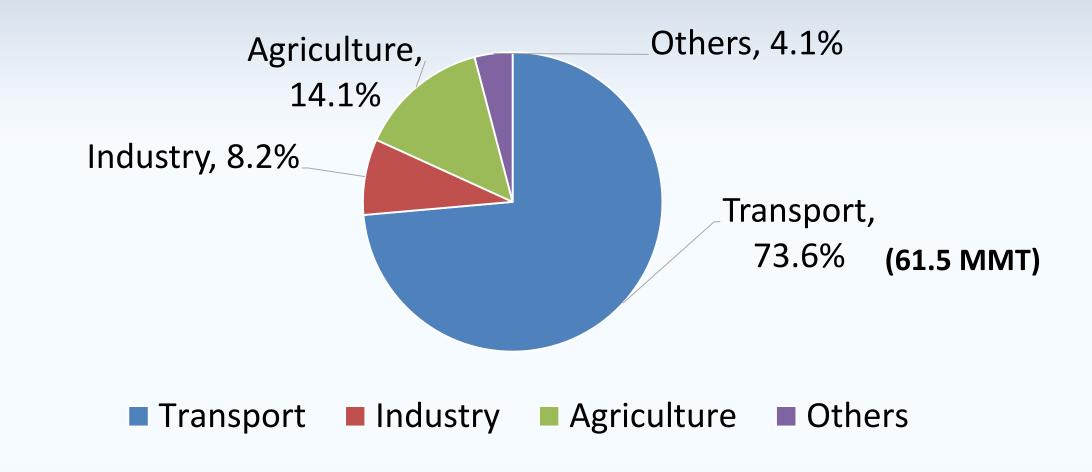


Program Objective

- **To Encourage** city bus fleet operators initiate and adopt fuel efficiency program based on the ESMAP Approach
- To Share
 - the experience regarding effectiveness of the ESMAP Approach
 - the potential or actual improvements that could be made to the ESMAP Approach.


PCRA Team

Why Fuel Efficiency ?


India's Petroleum Consumption

RA

SOURCE: WWW.CEICDATA.COM | Ministry of Petroleum and Natural Gas

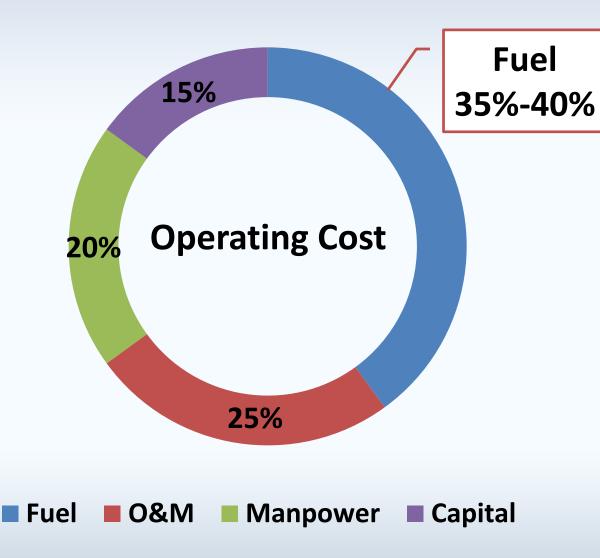
Diesel Consumption – End Use Sector Wise

Total Diesel Consumption (2018-19)-83.5 MMT

PCRA Typical Cost of Fuel for a Depot with 100 Bus

>Number of Bus = 100

>Depot's Total km Run = 350 Days x 200 km x 100 Bus = 70 lac km per year


>Depot's Fuel Consumption = 70 lac km/3.5 kmpl = 20 lac liter

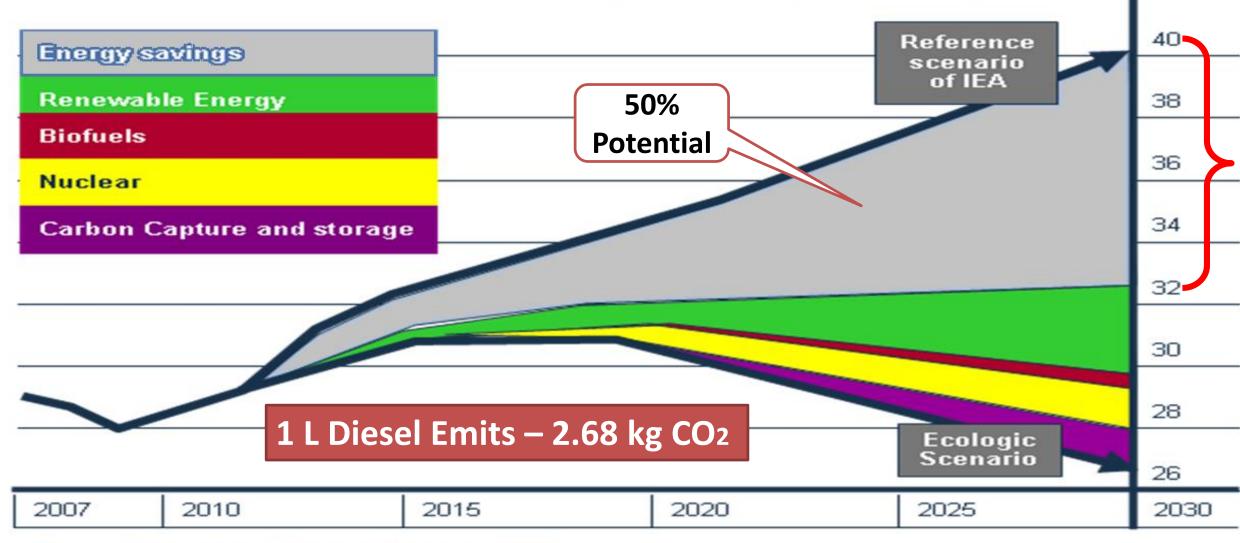
>Depot's Operating Cost/km = 50 INR

≻Fuel Cost/Liter = 65 INR

PCRA Typical Operating Cost of City Bus Service

Operating cost breakup ?

Fuel –


- Single Largest Cost Item
- Price Volatility Significantly
 Affect Budget

Therefore Fuel Efficiency is Very Important in City Bus Service

Potential of Energy Conservation in CO2 Emission Reduction

CO2 emissions in the Energy Sector, GtCO2/yr

Source International Energy Agency - 2009

PCRA Major Benefits of Fuel Saving-City Bus Service

Long Term Sustainability

- Reduced Fuel Consumption
- Reduced Operating Cost

Improved Air Quality

- Reduced Level of Air Pollutant (e.g. PMx, NOx)
- Reduced Green House Gas (GHG) Emissions

Short Term Benefit

• Cost Saving

Global Experience- ESMAP Approach

2000-2003

Edmonton, Canada

- 1,000 buses
- Fuel-saving training program for all drivers
 - Fuel economy improved 5.5%

2001-2002

Jakarta, Indonesia

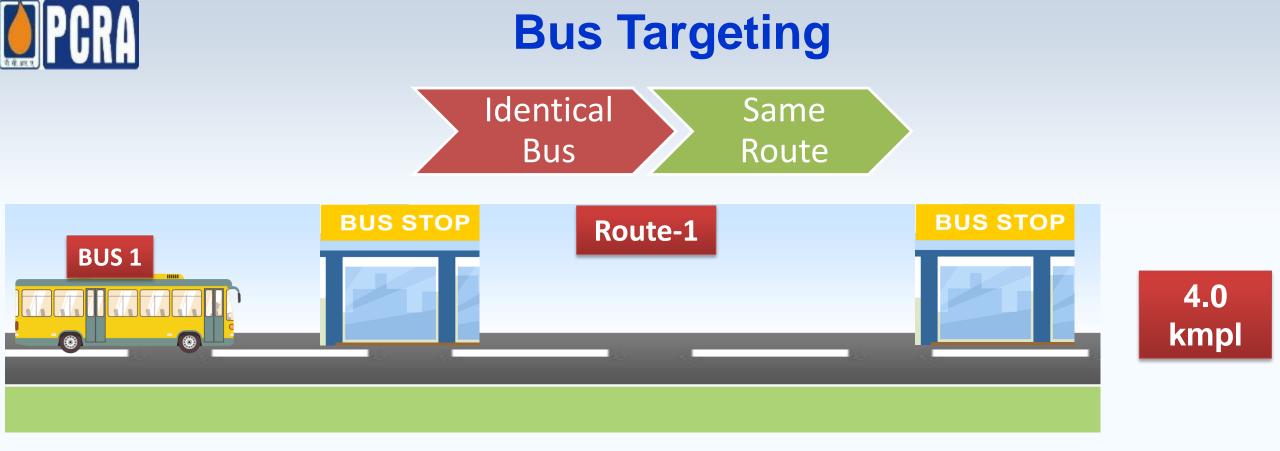
 Improved inspection program for engines, exhaust

- Fuel economy improved 5%
- Trained drivers on fuel-saving operating practices
 - Fuel economy improved an added 10%

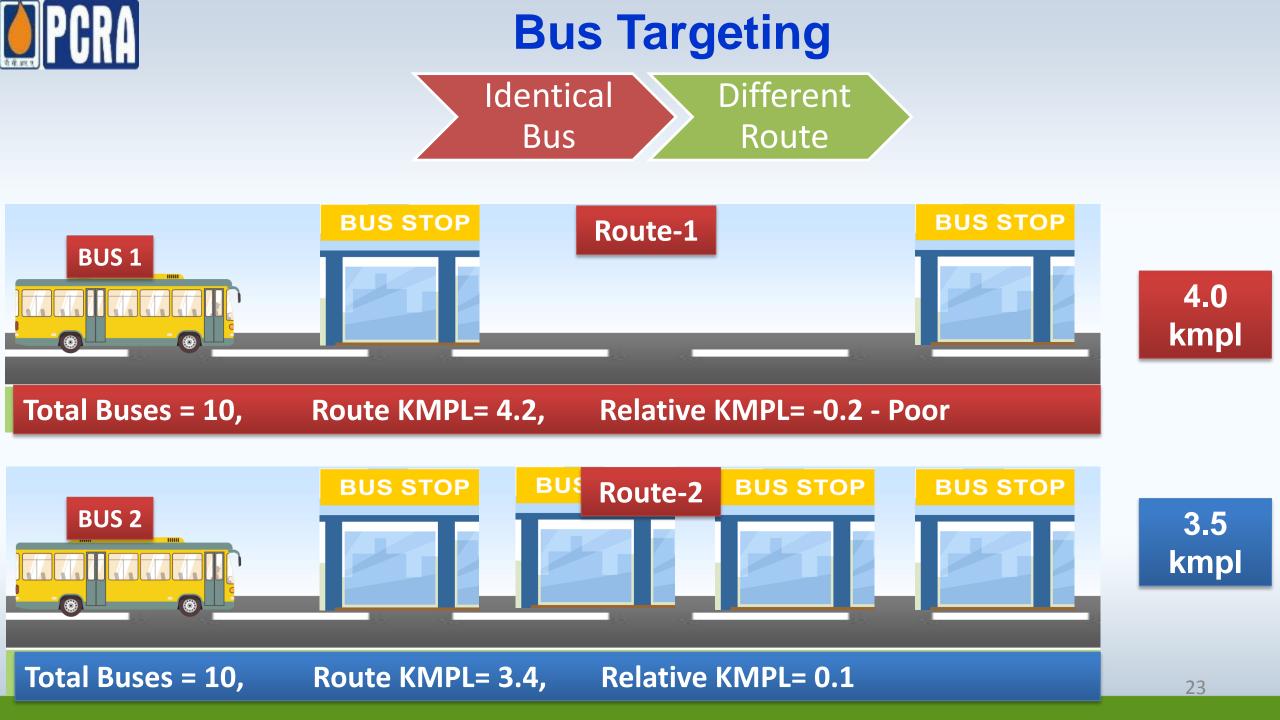
2011

Hyderabad, India

- Targeted maintenance of 10% lowperforming buses
 - Fuel economy improvement of 4-5%
- Targeted training of 5% lowperforming drivers
 - Fuel economy improvement of 6-8%

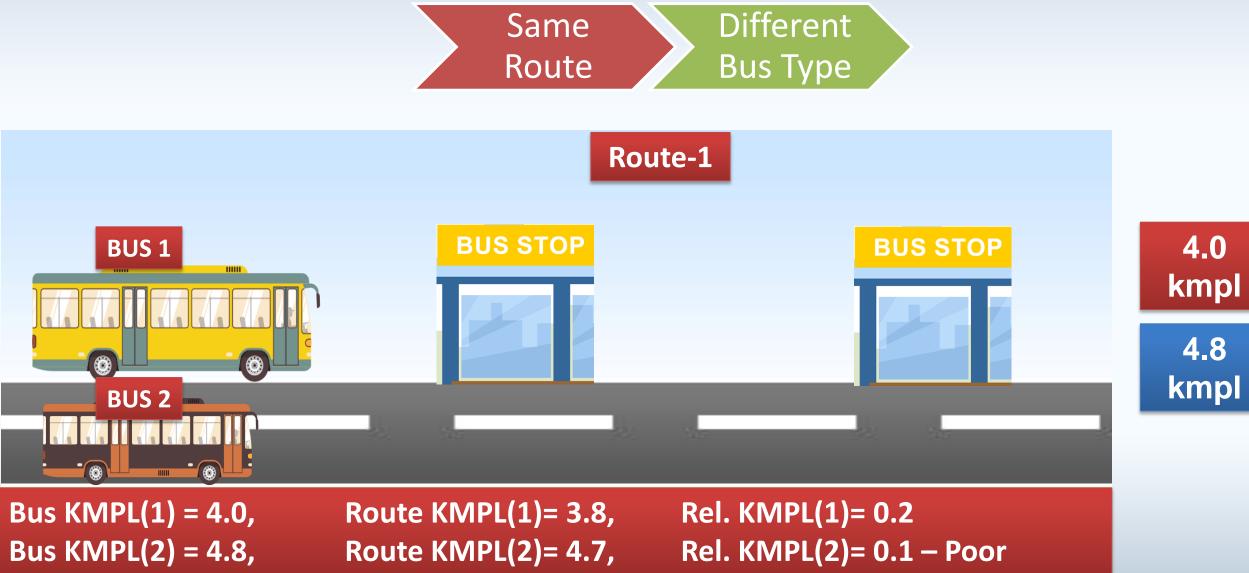

ESMAP Approach for Improving Fuel Efficiency in City Bus Services



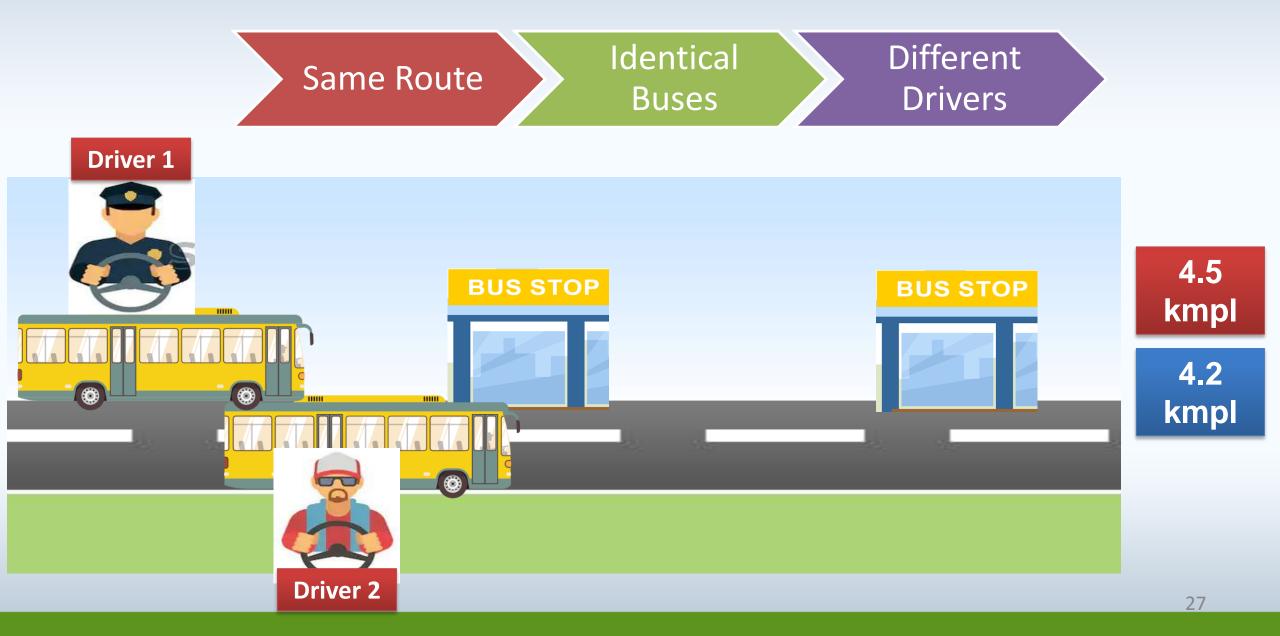

Factors Affecting Fuel Consumption

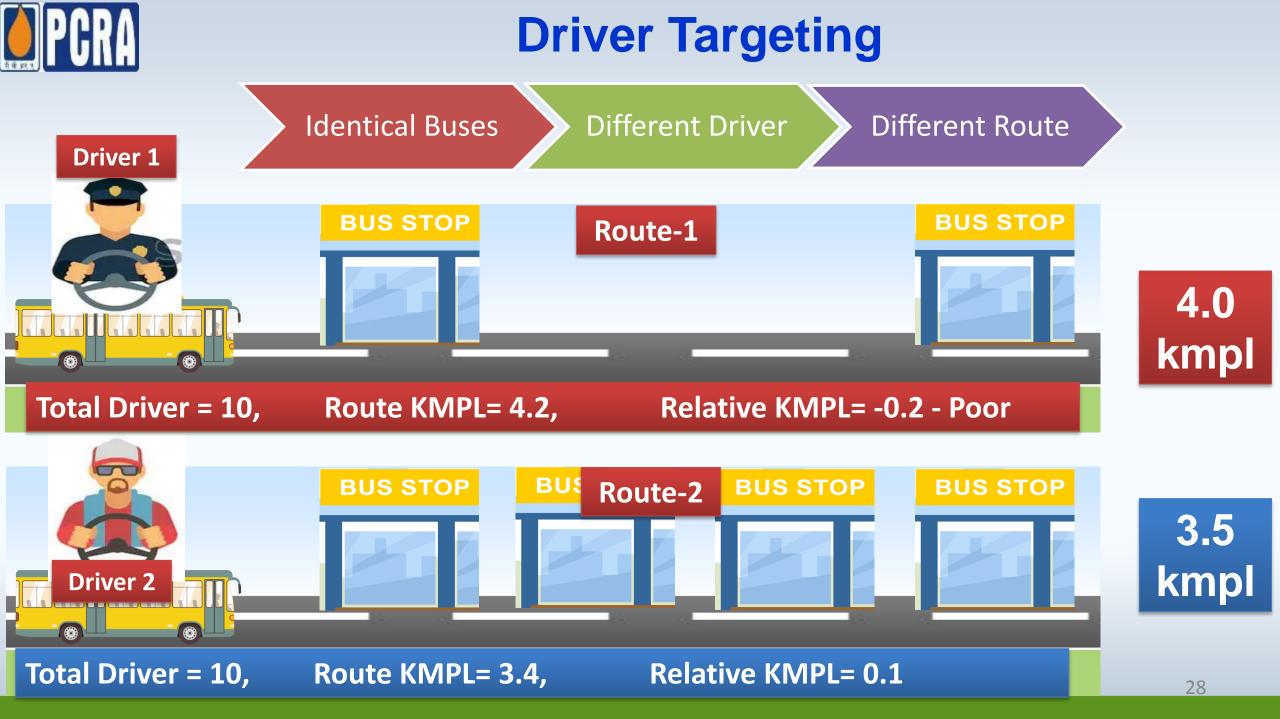
Route Characteristics	 Speed, Number of Stops, Traffic Condition Passenger Load, Terrain (Plane or Hilly) etc. 	
Bus Characteristics	 Engine HP, Bus Size, Transmission Type Use of Air-conditioning, Age of Fleet etc. 	
Bus Maintenance	 Facility, Spare Availability, Quality and Periodicity, Preventive Maintenance 	
Driving Skill	 Lack of Institutional Training (Focus- unlearning of inefficient driving habits) 	

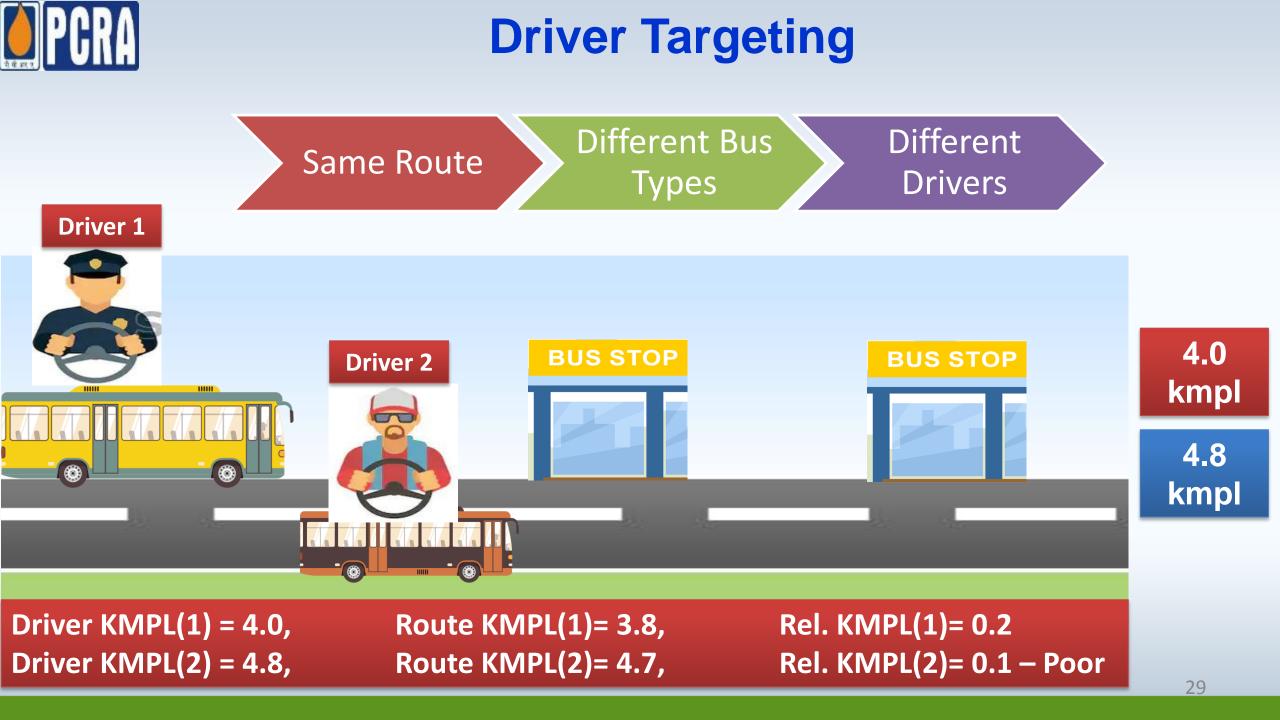
Why Bus Targeting ?



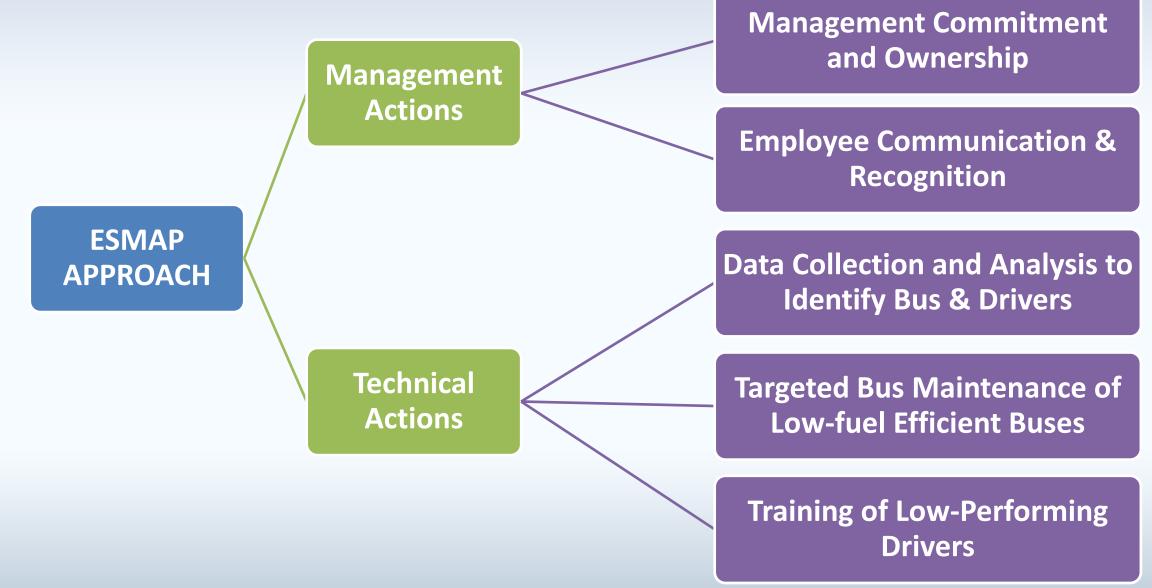
Bus Targeting


Bus Targeting


Bus	Route	Bus Type	КМ	Liters	(Step 1) Average kmpl	(Step 2) Route/ Bus Type Average (kmpl)	(Step 3) Relative Fuel Economy (kmpl)	Rank (1= Lowest)
101	12	1	4,435	1,341	3.31	3.45	-0.14	3
102	12	1	4,689	1,256	3.73	3.45	0.28	9
103	12	1	4,325	1,299	3.33	3.45	-0.12	4
Average	12	1	13,449	3,896	3.45			
104	12	2	4,897	1,404	3.49	3.22	0.26	8
105	12	2	4,478	1,501	2.98	3.22	-0.24	2
106	12	2	4,690	1,459	3.21	3.22	-0.01	5
Average	12	2	14,065	4,364	3.22			
107	14	1	4,890	1,267	3.86	3.62	0.24	7
108	14	1	4,550	1,356	3.36	3.62	-0.27	1
109	14	1	4,724	1,289	3.66	3.62	0.04	6
Average	14	1	14,164	3,912	3.62			

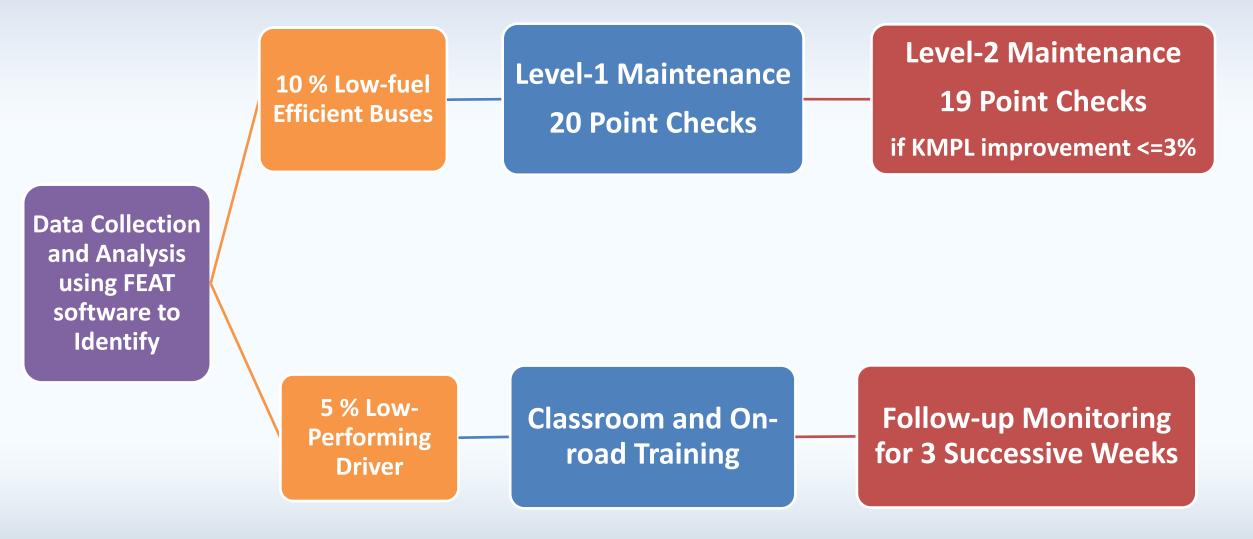

Why Driver Targeting ?

Driver Targeting


Driver Targeting

Driver	Route	Bus Type	КМ	Liters	(Step 1) Average kmpl	(Step 2) Route/ Bus Type Average (kmpl)	(Step 3) Relative Fuel Economy (kmpl)	Rank (1= Lowest)
512	12	1	4,456	1,234	3.61	3.45	0.16	6
514	12	1	4,678	1,256	3.72	3.45	0.27	8
583	12	1	4,315	1,406	3.07	3.45	-0.38	1
Average	12	1	13,449	3,896	3.45			
511	12	2	4,987	1,432	3.48	3.22	0.26	7
521	12	2	4,489	1,489	3.01	3.22	-0.21	3
586	12	2	4,589	1,443	3.18	3.22	-0.04	4
Average	12	2	14,065	4,364	3.22			
506	14	1	4,980	1,276	3.90	3.62	0.28	9
567	14	1	4,540	1,245	3.65	3.62	0.03	5
569	14	1	4,644	1,391	3.34	3.62	-0.28	2
Average	14	1	14,164	3,912	3.62			

ESMAP Approach Implementation



ESMAP Approach- Action Points

Technical Actions

ESMAP Approach – Workflow

Pre-Engagement Task

Pre-Engagement Task

"Train the Trainer" Approach

Depot Executive	Number of Executives Trained
Nodal Officer in Each Depot	18
Data Operator cum Analyst	20
Bus Maintenance Manager	23
Bus Driver Trainer	19
TOTAL	80

Data Collection- Formats

	Bus Inventory									
Bus Code	Bus Type	Bus Registration Number	Manufacturer	Manufacturing Year	Seats	AC / NonAC	Floor Type	Horse Power	Transmission Type	Lifetime Bus KM
101	3	KA5F-0101	LEYLAND	2013	48	NON AC	SEMI	130	MANUAL	485266

Driver Inventory							
Driver Cod	e	Driver Name					
512		Ravi Kumar Sahu					

Data Collection- Formats

	Route Inventory						
Route Code	One Way Length KM	One Way Std Trip Time Min	Buses Operated				
12	17.80	70	6				

Data Collection- Formats

Fuel Consumption								
Input Date	Route Code	Bus Code	Driver1 Code	Driver2 Code	Driver3 Code	Daily Operated KM	Fuel Added Liters	
1-Jul-19	12	101	512	514		207.2	45	

Daily one entry for each bus - In depot with 100 buses

Typically 3000 data points are to be carefully analyzed

Data Validation

Type of Error	Solution
1. Missing or incorrect entry during manual recording in paper	1. Raised awareness among executives at all level
2. Error while transcribing in electronic format	2. Training provided to data entry operator
	3. Verified and corrected erroneous data

Data Analysis Using FEAT Tool

== main switchboard			- = ×						
Month Fuel Efficiency	Analysis	T-Nagar,Chennai	READ ME						
The analysis requires the folder C:\BusFuelData be created. It imports data from									
the following Excel file which mu	st be located in	n C:\BusFuelData							
FuelConsumption.xlsx Da	ily data on fuel o	consumption by bus and d							
The following Information is required: 1- Listing of Routes 2- Route Grouping if Necessary 3- Route Splitting if Necessary 4- Bus Inventory									
This information can be changed us	sing the buttons	below.	based						
C:\BusFuelData. The user must pro		oorts an excel file of the analysis to the Excel output file.	Program						
Instructions 1. Enter a file name for the 2. Select one of the options 3. Click on Conduct Analysis	5. Click on Condu								
Enter a file name for the Excel output		nduct Analysis							
	L								
Routes, Grouping or Splitting Bus Inventory	Status of Data Vehicle Invent Routes Route Groupin Route Spliting		42 -						

Data Analysis Using FEAT Tool

11/13/2019 10:30:33 AM

Delete Record

?

P X

rambir *

E 5. 0. . Fuel Efficiency Analysis Tool - FEAT FILE -8 -8 $-\Box \times$ routes Month Fuel IMPORT Spliting Off Grouping routes ROUTES Routes Routes The analysis require To Insert a new record, click on the last row (New) and enter the data in the white spaces the following Excel ID Route Number Trip Time Import Date One Way Buses FuelConsumption.xls> Length Minutes Operated The following Informa 127 60 11/13/2019 10:30:31 AM 100 Delete Record 1- Listing of Routes 11/13/2019 10:30:31 AM 165A 118.5 80 Delete Record 2- Route Grouping if N 3- Route Splitting if Ne 11/13/2019 10:30:31 AM 80 15 181A 128 Delete Record 4- Bus Inventory 11/13/2019 10:30:31 AM 19 80 106.4 6 Delete Record This information can b 11/13/2019 10:30:31 AM 879 123 80 24 Delete Record The tool analyzes the C:\BusFuelData. The u 889 ÷ 137 80 11/13/2019 10:30:31 AM Delete Record 4 Instructions 11/13/2019 10:30:31 AM 954 112.6 80 19 Delete Record 1. Enter a file 11/13/2019 10:30:31 AM 957 80 33 2. Select one 114.4 Delete Record 3. Click on Co 11/13/2019 10:30:31 AM 975 116 80 3 Delete Record Enter a file name for the 11/13/2019 10:30:31 AM 990EXT 108 120 21 Delete Record 125 120 20 11/13/2019 10:30:31 AM OMS(+) Delete Record

Routes, Grouping Splitting *

Data Analysis Using FEAT Tool

PCRA

	Fuel Efficiency Analysis Tool - FEAT ?									? —	в×		
F	ILE											ramb	oir • 🗛
							invento	iry				_ (□ ×
		invento t a new record,		IMPORT DATA	he data in the white s	þaces				6	\bigcirc		-
_	ID	BusNumber	category	BusInventoryNumber	Manufacturer	Year	Seats	ACorNonAC	SemiLowFloororLowFloor	HorsePower	TransType	LifetimeEngineKM	Life
	1396	7103	2	7103	ТАТА	2010	35+01	AC	LOW FLOOR	230	Automatic	7,50,000.0	5814
	1397	7704	2	7704	ТАТА	2010	35+01	AC	LOW FLOOR	230	Automatic	7,50,000.0	531:
	1398	7728	2	7728	ТАТА	2010	35+01	AC	LOW FLOOR	230	Automatic	7,50,000.0	521
	1399	7729	2	7729	ТАТА	2010	35+01	AC	LOW FLOOR	230	Automatic	7,50,000.0	512:
	1400	7816	2	7816	ТАТА	2010	35+01	AC	LOW FLOOR	230	Automatic	7,50,000.0	564
	1401	7820	2	7820	ТАТА	2010	35+01	AC	LOW FLOOR	230	Automatic	7,50,000.0	556
	1402	7825	2	7825	ТАТА	2010	35+01	AC	LOW FLOOR	230	Automatic	7,50,000.0	541
	1403	7850	2	7850	ТАТА	2010	35+01	AC	LOW FLOOR	230	Automatic	7,50,000.0	521
	1404	7851	2	7851	ТАТА	2010	35+01	AC	LOW FLOOR	230	Automatic	7,50,000.0	563
	1405	7852	2	7852	ТАТА	2010	35+01	AC	LOW FLOOR	230	Automatic	7,50,000.0	520:
	1406	7853	2	7853	ТАТА	2010	35+01	AC	LOW FLOOR	230	Automatic	7,50,000.0	612
-	1407	7854	2	7854	ТАТА	2010	35+01	AC	LOW FLOOR	230	Automatic	7,50,000.0	589:
	1335	7859	1	7859	ТАТА	2010	35+01	NON AC	LOW FLOOR	230	Automatic	7,50,000.0	5904
	1336	7862	1	7862	ТАТА	2010	35+01	NON AC	LOW FLOOR	230	Automatic	7,50,000.0	600

Result after Analysis from FEAT

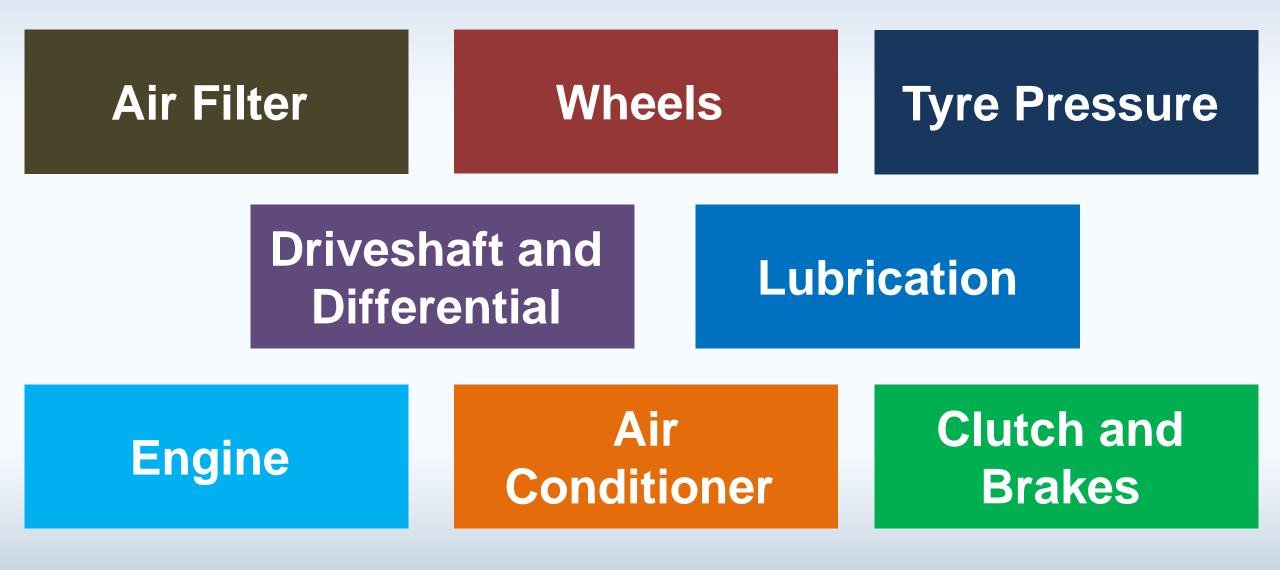
Route Average

Route Number	Bus Type	Bus HP	Route KM	Route Fuel Added	Route Avg. KMPL
17	1	110	20500	5380	3.81
12	2	140	27300	9039	3.02
14	1	110	23800	7100	3.35

Result after Analysis from FEAT

Bus Ranking – Lowest Performing Buses on the Basis of Relative Economy

Bus Number	Bus Type	Bus KMPL	Route Avg. KMPL	Relative KMPL	Bus Rank
101	1	3.45	3.81	-0.36	1
102	1	3.31	3.45	-0.14	2
103	2	2.93	3.02	-0.09	3
104	1	3.86	3.81	0.05	4
105	2	3.15	3.02	0.13	5
106	1	3.73	3.45	0.28	6



Result after Analysis from FEAT

Driver Ranking – Lowest Performing Driver on the Basis of Relative Economy

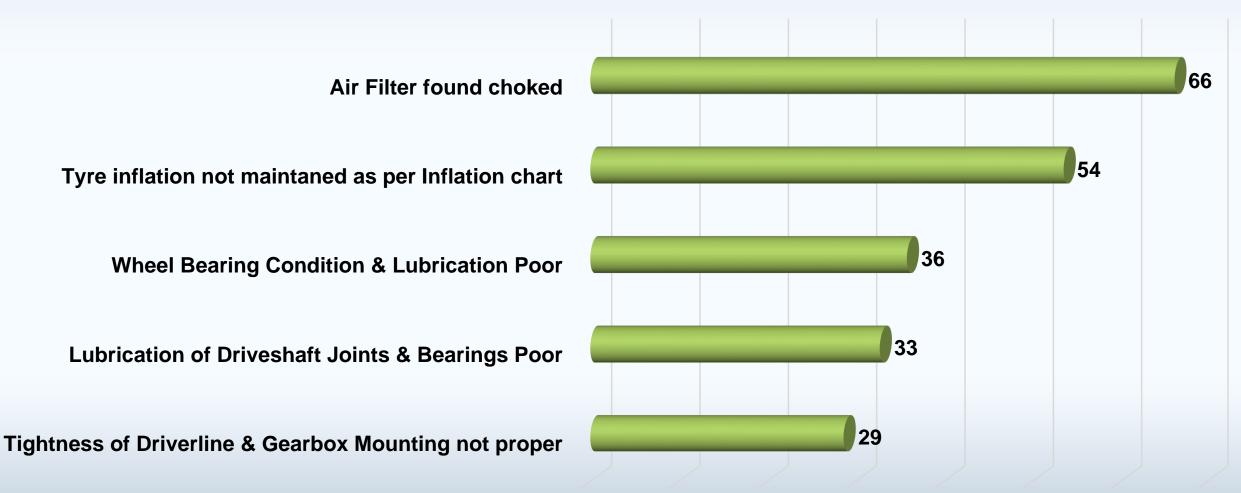
Driver Code	Bus Type	Driver KMPL	Route Avg. KMPL	Relative KMPL	Driver Rank
512	1	3.43	3.79	-0.36	1
514	1	3.29	3.43	-0.14	2
513	2	2.91	3.00	-0.09	3
516	1	3.84	3.79	0.05	4
580	2	3.13	3.00	0.13	5
509	1	3.71	3.43	0.28	6

PCRA Bus Maintenance – Level-I Checks- 293 Buses

PCRA Bus Maintenance Level I Checklist

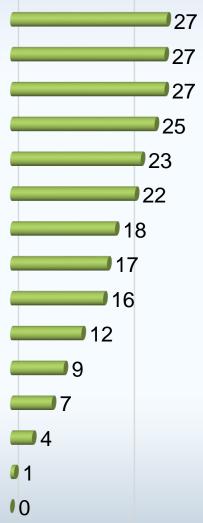
Sr. No.	Level 1 checks	Sr. No.	Level 1 checks
1.	Tyre inflation as per Inflation chart	11.	Condition of Clutch pedal linkages
2.	Free Rolling of Wheels	12.	Condition of Accelerator linkages &
3.	Wheel Bearing condition & Lubrication		Lubrication
4.	Brake Pedal Free play	13.	Accelerator Return spring condition
5.	Gap between Brake Liner and Drum/Disc	14.	Air cleaner condition (Choke indicator)
6.	Caliper boot & Wear Adjuster cap	15.	Exhaust pipes/ muffler blockage
7.	Brake Retraction after pedal release	16.	Fault codes displayed from On-board
8.			diagnostics
	Lubrication of Driveshaft joints & Bearings	17.	Visible Smoke level on snap acceleration
9.	Lubrication of Differential	18.	A/C Compressor belt tension
10.	Tightness of Driveline & Gearbox mounting	19.	Refrigerant pressure
	bolts	20.	Compressor working condition 49

Bus Maintenance – Level-I Checks


Bus Maintenance – Level-I Checks

Level-I Observations

% of Buses Having Defects (Bus Checked – 293/2883)



Level-I Observations

% of Buses Having Defects (Bus Checked – 293/2883)

Lubrication of Differential not proper

Gap between Brake Liner and Drum /Disc not as per recommended clearance Condition of Caliper Boot & Wear Adjuster Cap not as per recommended lining thickness Brake Pedal Free Play not as per recommended free play Blockage observed in Exhaust Pipes / Muffler Condition of Clutch Pedal Linkages not as per recommended play Accelerator Return Spring Condition not as per recommended free play Brake Retraction not quick after Pedal Release No Free Rolling of Wheels

- Improper Smoke Level observed on Snap Acceleration
- Condition of Accelerator Linkages & Lubrication not as per recommended play
 - A/C Compressor Belt Tension not proper
 - Fault Codes found displayed on dashboard (On-board Diagniostics)
 - Refrigerent Pressure not adequate
 - Compressor Working Condition not proper

PCRA Bus Maintenance – Level-II Checks- 61 Buses

Clutch	Wheels	Leakages
Fuel Injection System	Engine Oil	Turbocharger
Engine Cylinder	Exhaust System	Overheating

Bus Maintenance Level II Checklist

PCRA

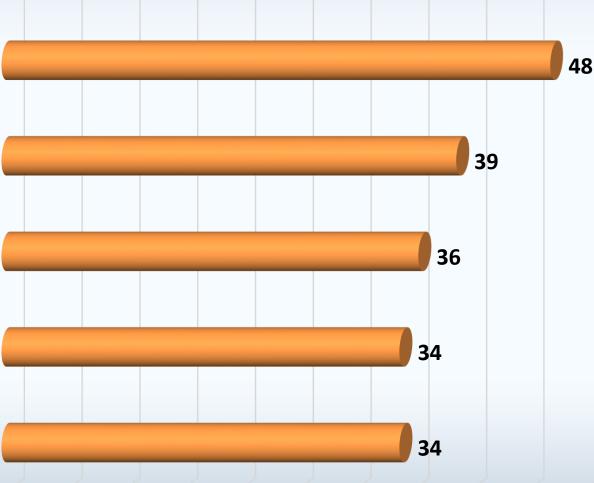
南京銀王				
Sr. No.	Level-II Checks	Sr. No.	Level-II Checks	
1.	Wheel Alignment	11.	Fuel Injection Pump Working Condition	
2.	Tyre Camber	12.	Condition of Injectors (Spray / Pressure Test)	
3.	Wheel Bearing Play		condition of injectors (spray / rressure rest)	
4.	Condition of Clutch Facing	13.	Condition of Turbo Charger	
5.	5. Condition of Pressure Plate & Flywheel Facing		Tightness of Cylinder Head Bolts/ Nuts & Cylinder	
			Head Condition	
6.	Condition of Release Bearing & Linkages	15.	Engine oil consumption / Engine Blow- by	
	Condition of Release Bearing & Linkages		condition	
7.	Leakage of Fuel from Fuel Tank / Fuel Lines	16.	Cylinders Compression Values (for High Oil	
	Leakage of Fuel from Fuel fank / Fuel Lines		Consumptions)	
8.	Leakage of Gas (with smoke Detector)	17.	Engine Overheating / Coolant Loss (Flush if	
9.	Tightness of Tanks Mounting & Pipes Clamps		Required)	
	rightiness of failles woulding & ripes claimps	18.	Condition of Muffler & Catalytic Converter	
10.	Fuel Injection Pump Timing & Max Fuel Stop			
	Setting	19.	55 Exhaust Brake Butterfly Operation	

Bus Maintenance – Level-II Checks

PCM Bus Maintenance – Level-II Checks

Level-II Observations

% of Buses Having Defects (Bus Checked - 61/293)


Wheel Alignment not proper

Engine Overheating / Coolant Loss observed

Condition of Muffler & Catalytic Converter not proper

Wheel Bearing Play not proper

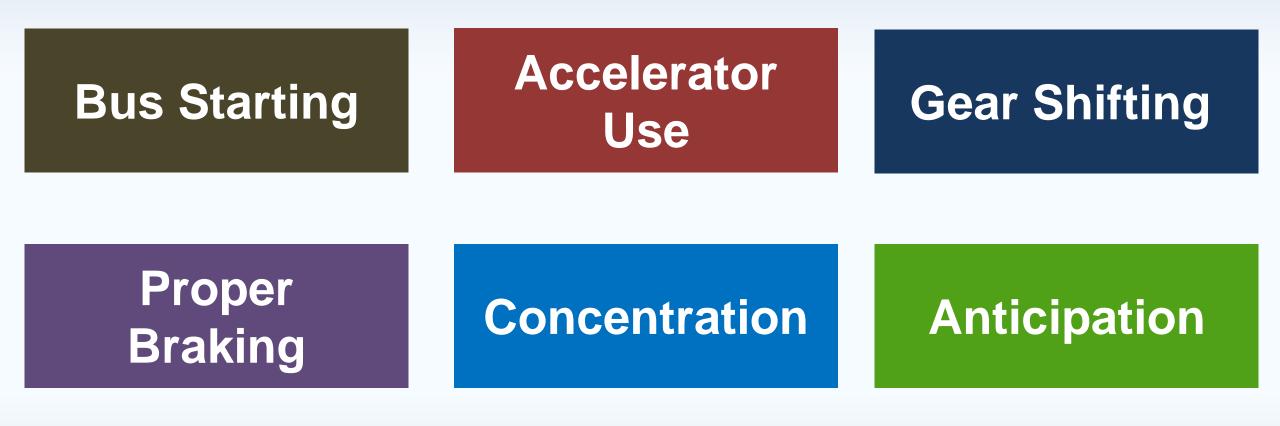
Condition of Pressure Plate & Flywheel Facing not proper

Level-II Observations

% of Buses Having Defects (Bus Checked – 61/293)

Condition of Release Bearing & Linkages not proper Condition of Injectors (Spray / Pressure Test) Condition of Clutch Facing not proper Leakage observed from Fuel Tank / Fuel Lines Fuel Injection Pump Timing & Max Fuel Stop Setting not proper Fuel Injection Pump Working Condition not proper Engine oil consumption / Engine Blow- by condition not proper Condition of Turbo Charger not proper Tightness of Tanks Mounting & Pipes Clamps not proper Tightness of Cylinder Head Bolts/ Nuts & Cyl Head Condition not proper Exhaust Brake actuator & Butterfly valve not proper Tyre Camber not as per recommended values Cylinders Compression Values (for High Oil Consumptions) not proper Leakage of Gas observed (with smoke Detector)

Driver Training Program


One day classroom training

- Motivational Training
- Presentation on eco-driving techniques

Eco-Driving Techniques

Driver Training- On-the Road

Driver Trainer Demonstrates the eco-driving technique – then drivers try and demonstrates those techniques

PCRA Driver Follow-up Monitoring for 3 weeks

Driver Trainer accompany drivers on actual route and observe driving behavior

Weekly Follow-up Monitoring Checklist

Sr. No.	Driving Checklist	Sr. No.	Driving Checklist
1.	Did the driver check BEFORE STARTING THE IGNITION whether the pressure in both the "AIR METERS" are correct?	7.	Did the driver use FOURTH GEAR for driving up to a speed of 40kmph and keep the ACCELERATOR at 3/4 position?
2.	Did the driver keep the FEET ON THE FOOT REST NEAR ACCELERATOR?	8.	Did the driver use FIFTH GEAR for driving at TOP SPEED and keep the ACCELERATOR in FULL position?
3.			Depending upon road or traffic condition, did the driver use the POWERPOINT POSITION on the ACCELERATOR when driving at maximum speed?
4.	Did the driver set the bus in the motion using FIRST GEAR WITHOUT ACCELERATOR?	10.	Did the driver use his/ her TOES for PRESSING the ACCELERATOR?
5.	Did the driver use SECOND GEAR for driving up to a speed of 20kmph and keep the ACCELERATOR at 1/4th position?	11.	Did the driver REMOVE THE FEET FROM THE ACCELERATOR 100 meters BEFORE the stoppage point such as bus stops, traffic signals etc. and for slowing
6.	Did the driver use THIRD GEAR for driving up to a speed of 30kmph and keep the ACCELERATOR at 1/2 position?	12.	down at speed breakers and turnings? Did the driver DRIVE WITHOUT PRESSURE AND WITH 64

Driving Behavior Observations

S.	Driving Flaw (Targeted drivers 294)	% of Drivers Committing Flaw		
No.		1 st Week Follow-up	2 nd Week Follow-up	3 rd Week Follow-up
1	The driver did not use his/ her TOES for PRESSING the ACCELERATOR?	42%	11%	7%
2	The driver did not REMOVE THE FOOT FROM THE ACCELERATOR 100 meters BEFORE the stoppage point such as bus stops, traffic signals etc. and for slowing down at speed breakers and turnings?	27%	11%	6%
3	The driver did not keep the Foot ON THE FOOT REST NEAR ACCELERATOR?	26%	10%	3%
4	The driver did not set the bus in the motion using FIRST GEAR WITHOUT ACCELERATOR?	26%	21%	8%
5	The driver did not start the bus in "IDLING" condition without pressing accelerator?	26%	11%	3%
6	The driver did not use the FOURTH GEAR for driving upto a speed of 40kmph and did not keep the ACCELERATOR at 3/4 position?	24%	14%	4% 65

Driving Behavior Observations

S.	Driving Flaw (Targeted drivers 294)	% of Drivers Committing Flaw		
No.		1 st Week	2 nd Week	3 rd Week
		Follow-up	Follow-up	Follow-up
7	The driver did not use the THIRD GEAR for driving upto a speed of 30kmph and did not keep the ACCELERATOR at 1/2 position?	22%	17%	4%
8	The driver did not use the POWERPOINT POSITION on the ACCELERATOR when driving at maximum speed?	22%	14%	7%
9	The driver did not use the SECOND GEAR for driving upto a speed of 20 kmph and din not keep the ACCELERATOR at 1/4th position?	18%	10%	5%
10	The driver did not use the FIFTH GEAR for driving at TOP SPEED and did not keep the ACCELERATOR in FULL position?	16%	10%	7%
11	The driver did not check BEFORE STARTING THE IGNITION whether the pressure in both the "AIR METERS" are correct?	8%	7%	4%
12	The driver did not DRIVE WITHOUT PRESSURE AND WITH CONCENTRATION?	6%	7%	3% 66

Impact Analysis

Program Summary

Number of Buses Attended – 293

Number of Depots – 15/18

Number of Drivers Trained – 294

Impact Analysis- After 2 Rounds

Buses Attended Level-I Checks	Buses Attended Level-II Checks	Relative Performance Improved	% Avg. Fuel Economy Improved	Fuel Saving in Two Months	Monetary Saving in Two Months
293	61	241	12.5%	38 kI HSD 8.7 T CNG	28.6 Lac

10 % Targeted Buses in Each Round

Impact Analysis

Driver Trained	Relative Performance Improved	% Avg. Fuel Economy Improved	Fuel Saving in Two Months	Monetary Saving in Two Months
294	241	12.6%	14 kI HSD 8.5 T CNG	13.2 Lac

5 % Targeted Drivers in Each Round

Impact Analysis on 15 Depot

Saving in Two Months

80.5 KL Diesel Saved

52.3 Lacs Rupees Saved

215.7 T CO2 Emission Reduced

वीस हजार लिटर इंधनाची यचत होऊन 'केएमटी'च्या उत्पन्नात दरमहा सरासरी सात लाखांची वाढ झाली आहे. त्यामुळे डवधाईला आलेल्या या परिवहन उपक्रमास ही योजना 'वुस्ट' ठरणार हे निश्चित. 'पीसीआरए' योजनेमुळे फक्त उत्पन्नातच वाढ नव्हे, तर वाहनांचे वायुप्रदूषणही कमी होण्यास मदत झाली आहे.

गेल्या अनेक वर्षांत संपूर्ण हाराष्ट्रातील शासनाची परिवहन सेवा दियात सुरू आहे. कोल्हापूर मनपाची रिवहन सेवा (केएमटी) ही त्याचाच एक भाग आहे. 'केएमटी'लाही दरमहा तोट्याला सामोरे जावे लागते. सद्य:स्थितीत केएमटीला सुमारे साडेआठ ते नऊ लाख रुपयांपर्यंत उत्पन्न मिळत आहे. या उत्पन्नात वाढ करण्यासाठी 'पीसीआरए' योजना लागू केली. त्यासाठी ऑक्टोबर २०१८ पासूनही प्रत्येक बसचे सूक्ष्म निरीक्षण करून तिच्यातील तांत्रिक दोष दूर करण्यासाठी पेट्रोलियम कॉन्झर्व्हेशन अँड रिसर्च असोसिएशनचे चरिष्ठ तांत्रिक सल्लागार बी. एस. राजे, सल्लागार शिवाजी जाधव आणि केएमटी कार्यशाळा व्यवस्थापक प्रतापराव भोसले यांनी प्रयल करून केएमटीच्या प्रत्येक कर्मचारी, चालक, वाहक यांना 'पीसीआरए'चे प्रशिक्षण दिले. त्याद्वारे ही योजना कार्याच्वित केली आहे. विशेष म्हणजे, सरकारी वाहनांचे प्रदूषण कमी करण्याच्या उद्देशाने ही 'पीसीआरए' योजना आणली आहे.

ऑक्टोबर २०१८ पासून प्रत्येक वसमधील तांत्रिक बावींचे सूक्ष्म निरीक्षण करून त्यातील दोष कमी करण्याचा प्रयल केला जात आहे. त्यासाठी 'फ्लीट' नावाचे सॉफ्टवेअर तयार करून त्याद्वारे टण्प्याटण्प्याने बसेसच्या कार्यपद्धतीत बदल केला. त्यातून गेल्या दोन महिन्यांपूर्वी सर्व

यसेसमधील आणि चालकांच्य कौशल्यातील दोपही कभी करण्यास मदत झाली. त्याचा परिणामही सकारात्मक दिसून आला आहे. य 'पीसीआरए'मुळे प्रत्येक यसचे वायुप्रदूषण कभी झाल्याचे दिसून येते तर दरमहा डिझेलची वचत होत आहे. परिणामी केएमटीच्या उत्पन्नात खर्च यगळता दरमहा सुमारे सात लाखांच र्य भर पडत आहे.

Hello Kolhapur Page No. 2 May 14, 2019 Powered by: erelego.com

12

Challenges Faced

- Some depots are hiring drivers on ad-hoc basis, so at times targeted drivers could not complete training program.
- \succ Data maintained by the depot is not in standard format.
- Due to operational constraints buses/drivers could not be made available during working hours.
- > Due to various constraints depot delayed in attending maintenance issues
- Some Depots do not have practice of daily topping of fuel tank
- Depot management is occupied with routine operations

Lessons Learnt

- Modification of preventive bus maintenance schedules has been suggested as per Level-I & Level-II observations.
- ✓ Corrective actions, for faults identified in buses and skill deficiency in drivers observed, should be replicated in all buses/drivers.
- Depot should continue training and follow-up monitoring to reinforce eco-driving techniques amongst drivers.
- ✓ Depot should strengthen data recording and analysis

www.pcra.org

www.facebook.com/pcraindia

www.pcra.org

www.facebook.com/pcraindia

76