

CONGESTION PRICING: A CASE OF DELHI

Prof. H.M. Shivanand Swamy

Minoti Rawat

DELHI TRANSPORT: OVERVIEW

Role of Government in controlling traffic in Delhi

To improve the quality of public transport, some measures taken by the Government are:

- > Completion of second phase of Delhi.
- More than 3,500 low floor air-conditioned and non air conditioned buses introduced by the Delhi Transport Corporation (DTC).
- Withdrawal of blue-line buses.
- Construction of new roads, foot bridges, flyovers and widening of existing road network (around 23 Flyovers were completed before commencement of CWG-2010).
- A Delhi Transport Infrastructure Development Corporation has been set up to manage Inter- State Bus Terminals in Delhi.
- **BRT corridor** constructed in 2008 and scrapped in 2015.
- Ring Road bypass and elevated corridors in some areas of Delhi like Barrapula drain have been provided with signal-free flow of traffic.
- > Implementation of ITS in Transport

DELHI CONGESTION: OVERVIEW

- > Delhi most polluted city in the world WHO (2014).
- The annual growth of vehicles in Delhi increased from 4.72 per cent in 1999-2000 to 6.89 per cent in 2014-15.
- As per the Delhi Economic Survey, vehicular pollution rose by 135.59 percent between 1999-2000 and 2011-12. In 2011-12 it decreased marginally from 7.44 percent in 2010-11 to 7.27 percent.
- > All these facts are despite of Delhi having **highest road density** of 2,103 km/100 sq.km.
- > Recently introduced **Odd even policy trial** for 15 days in January and second trial in April.
- Though, the city is moving towards interesting opportunities like odd-even but, for balancing long term it cannot depend on such regulatory ideas. Centre for Science and Environment Director General Sunita Narain during an event 'Our Right to Clean Air' said "the curbs on vehicles can only be an emergency measure and not a permanent one".

Thus, need to move to sustainable idea like Congestion Pricing

Increasing number of Private Motor vehicles

e Pollution

Delays

Public Transport not able to cater Demand

Source: Compiled from various sources: Rumani Saikia Phukan,2012

RESEARCH QUESTION

Which factors can influence people to shift from private mode to public transport in Delhi (Connaught Place)?

RESEARCH OBJECTIVES

To asses the role of Congestion Pricing in determining mode choice behavior

METHODOLOGY

Comprehensive search through Internet sources, cases where congestion charge is taken. Computation of marginal congestion cost for study area through Traffic volume, speed and VOT

Analysis of existing

conditions of the

analysing various

reports.

study area through

Orthogonal array used to form various scenarios Binary Logit Model and correlation used for analyzing survey results

Mode Choice stated preference Survey

CONCEPTUAL FRAMEWORK

- The main intuition behind congestion charging is the **internalization of negative externalities** (time costs and delays) which are imposed to other road users by an additional driver entering the road.
- The rational of this charge implies that the toll increases with congestion levels since the cost suffered by users is increasing with the quantity of vehicles **(Q)**.
- The difference between social and private marginal costs for each Q is exactly the optimal toll (Ps) needed to internalize congestion costs. Therefore the level of the optimal toll must vary with congestion levels and vehicle type (if different vehicles differently affect infrastructure costs). This concept is known as **Pigouvian taxation** and has remained the leading principle in transport economics on road traffic externalities regulation (Button and Verhoef, 1998)

EXTERNALITIES

• "Externalities are goods that have an impact on welfare (positive or negative) that is not taken into account by the agent producing them."

- (Friedman 1996)

Source: Dirk van Amelsfort, 2012

CONGESTION PRICING

It is described as a distance, area or cordon based road-user charging policy around congested city centres.

CONGESTION PRICING TECHNOLOGIES: Types of

Electronic Toll Collection

1. Automatic Number Plate Recognition

2. Dedicated Short Range Communications

3. Vehicle Identification Number

4. Satellite Systems and Cellular networks

Source: Dirk van Amelsfort, 2012

BENEFITS OF CONGESTION PRICING

• **Time Savings** Reduce traffic levels and smooth traffic flow leading to shorter and more predictable journey times.

• Wider Economic Benefits Higher total number of people can reach the city within a given amount of time. It gives companies access to a bigger and more varied pool of labour.

Creation of an investment dividend

It represents an opportunity for cities to generate ring-fenced revenue for urban public transport.

• Promotion of behavioural change

- It incentivise smarter transport and land-use choices.
- It can encourage behaviour change, as fewer people will use cars and more will use
- less expensive travel modes, which are often more sustainable.

Source: The NZ Transport Agency's BCA Strategic Options toolkit, 2014

Successful

- Singapore
- London
- Stockholm
- Norwegian Cities

CASE STUDIES

	SINGAPORE	LONDON	STOCKHOLM	NORWEGIAN CITIES (OSLO, BERGEN AND TRONDHEIM)			
OBJECTIV	ALS - To control traffic congestion in (CBD) during peak hours. E ERP – Charge vehicles as per use.	To reduce congestion, yield net revenues - payback initial costs.	To reduce congestion, increase accessibility and improve the environment	Objective of generating revenue			
SCHEME	Area Licensing Scheme (ALS), 1975 and Electronic Road pricing (1998)	The scheme covers the very heart of central London (21 square kilometres), the area is bounded by the Inner Ring Road. (implemented 2003)	Introduced in August 2007. A period trial - January 2006 until July 2006.	Road tolling schemes, introduced in Bergen (1989), Oslo (1990) and Trondheim (1991)			
RESULT	31-44% drop in Traffic in restricted zone & reduction in CO2 emission to 0.85%.	Reduced cars by around 20% and congestion by 30% . Revenue generated from an expected £130m (€190m) to around £90m (€131m) (2004).	Average journey times fell and the queuing times dropped by a third in the rush hours. 6% changed their transport mode and the number of cars in the park-and-ride facilities grew a 23% as well.	Traffic reduction of approx. 5- 10% in all cities. Revenue generation annually – US\$ 96m, US\$ 9.6m & US\$ 12.8m in Oslo, Bergen And Trondheim respectively.			
LIMITATION ADVANTAG	 It was labour intensive & not equitable to motorists and always a rush to enter the RZ just before or after the restricted hours. Charges are reduced when speeds exceed the optimal speed range 	In London all vehicles pay the same charge. Around 40% of vehicles do not pay and numbers are still rising. Camera based ANPR system installed has been a failure. Too many number plates are misread	Few routes were left free of charge as they had only one connection to the city centre . Thus, travel time and vehicle increased in these two routes	Working successfully on inner roads and fulfilling objective of generating revenue. Source: Computed from Singh & Sarkar			
	Source: Land Transport Authority, Singapore, GOH, Shou Xian ,2014	and it is very expensive to run Source: Steve Kearns, Transport for London,	Source: Jonas Eliasson, Centre for Transport Studies, 2014	9th Urban Mobility India Onference & Expo 2016 Planning Mobility for City's Sustainability			

Unsuccessful

- Hong Kong
 - Edinburg

CASE STUDIES

HONG KONG

BACKGROUND

First attempt tointroduceanautomatic systemin 1980's

An experiment including 2500 vehicles was initiated in **1983.**

The idea was then a full scale implementation in 1985.

The field trials took place during the early stages of a transfer of powePOLITICALitish colcACCEPTANCE to popularly elected officials.

OBSTACLES

The agreement that Hong Kong should be reunited with China, which led to a fear for an electronic monitoring system that wasTECHNOLOGY supervision.

The **technology** at that time was **undeveloped** and thus with doubtful functionality.

People not perceive trEQUTY:/PEOPLEm the project would

Source: Report on the study of road traffic congestion (Hong Kong),2014 them.

EDINBURG

BACKGROUND

The city of Edinburgh decided to carry out a referendum in **February 2005**.

The scheme proposed was a two cordon congestion zones.

Revenues were going to be devoted to improve public transport

OBSTACLES

Edinburgh citizens rejected the project in a referendum – 74.4 % of negative votes– and the counPEOPLE the PACCEPTANCE users.

The **public's limited under- standing** of the scheme.

Voters were unconvinced scheme proposed would EQUITY: PEOPLE dual objectives of reducing congestion and improving public transport

Source: Daniel Albalate & Germà Bel, 2008

nference & Expo 2016

Planning Mobility for City's Sustainability

STUDY AREA: DELHI

To Karpal(NH)1

To Rohtak (NH-10)

To Gurgaon(NFL

Source: CDP, Delhi

- The Municipal Corporation of Delhi (MCD) 1,397.3 km², the New Delhi Municipal Council (NDMC) – 42.7 km² and the Delhi Cantonment Board (DCB) – 43 km².
- of vehicles registered in Delhi are plying in NCR areas and vis- a-vis the vehicles registered in NCR are plying in Delhi.

Cycle Rickshaw

Percent of Vehicles population 2014-15 (source: Economic Survey Of Delhi, 2014-15)

SURVEY LOCATION: CONNAUGHT PLACE

350 Stated Preference Surveys (350*4 = 1400)

Only car users were surveyed

The survey was conducted along eight arterial roads (especially the parking area)

9 Urban Mobility India Onference & Expo 2016 Planning Mobility for City's Sustainability

Source: Google Earth

CONGESTION PRICING: NEED

	Roads Capac		2016 (PCUcounts)2018 (PCUExistingcounts) BAU		2016 (v/c)	2018 (v/c)
Janpath		6000	5350	6126	0.9	1.0
K.G marg		4000	5543	6346	1.4	1.6
	Barakhamba Road	4000	6839	7830	1.7	2.0
Vivekanand Road		4000	5723	6552	1.4	1.6
Panchkuian Road		6000	4856	5560	0.8	1.4
Baba kadhak Singh Marg		4000	7334	8396	1.8	2.1
	Sansad marg	4000	3815	4368	1.0	1.1
	Chelmsfoed Road	4000	3319	3800	0.8	1.0

*PCU counts are for cars and for peak hours only

- Volume by capacity ratio shows that **roads are saturated** during peak hours.
- Along Barakhamba Road and Baba Kadhak Singh Marg there is high number of offices, therefore ٠ comparatively they accounts for higher volumes.
- If the same conditions are projected for the coming two years, the volume by capacity ratio ٠ further crosses the acceptable levels. Therefore, some measures are required which can lower down the traffic volumes. Source: computed data from Singh & Sarkar, Journal of the IRC, July - September 2009

METHODOLOGY: COMPUTING MARGINAL CONGESTION COST

2009 data of Traffic Volume (PCU) on major roads(8 roads) at CP was escalated with 7% increase in traffic volume.

> Source: Singh & Sarkar, Journal of the IRC, July – September 2009

With the help of Microscopic Simulation Method Non-Linear, Speed was calculated.

> Source: S. Velmurugan, Errampalli Madhu, K. Ravinder, K. Sitaramanjaneyulu & S. Gangopadhyay, Journal of the IRC, December 2010

VOT was calculated by applying WPI to VOT for primary route(2009) – 62.5 and multiplied by ratio of Per Capita Income of Delhi and India

> Source: IRC sp 30 2009, 6.7, table- 6, Socio-Economic Profile of Delhi (2014-15)

Marginal Congestion Cost was calculated by the obtained values,

> Source: Calculating Transport Congestion And Scarcity Costs, Professor Chris Nash and Mr Tom, **1999 Sansom, (ITS)**

METHODOLOGY: COMPUTING MARGINAL CONGESTION COST

Microscopic Simulation Method (Non-Linear)

(Speed Flow equations for Cars)

y = 47.633+(2268.931-0.407x)^0.5 (for 4 lanes)

y =47.651+(2270.637-0.294x)^0.5 (for 6 lanes)

y = Speed	:	Obtained from the above
		equation
x = PCU	:	Values obtained by escalating
		2009 PCU counts

Value of Time (VOT) (in Rs/hr)

Source: IRC sp 30 2009, 6.7, table- 6

Cars = VOT for primary route (2009) : 62.5

Source: http://www.eaindustry.nic.in/display_data.asp

	WPI (2014) :	182.01						
	WPI (2009) :	127.86						
Ratio of WP	l = WPI(201	L4)/WPI(20	09) : 1.42					
Cars = VOT	for primary r	route (2014): 88.96					
Per Capita Income Delhi 2013- 2014 (Constant Price) : 118411								
Per Capita lı	ncome India	2013-2014	1					
(Constant P	rice)		: 39904					
Ratio of PCI = PCI(Delhi)/PCI(India) : 2.97								
VOT Individual (Delhi 2014) : 264								
		th Tour	an Mahility India					

Mobility for City's Sustainability

METHODOLOGY: COMPUTING MARGINAL CONGESTION COST

Marginal Congestion Cost = -q(b/V^2)(dv/dq)

Where,

dv/dq - the slope of the speed/flow relationship, which varies with the type of road and volume of traffic

- q the volume of traffic (in PCUs)
- v the resulting speed, which varies with the type of road and volume of traffic
- b the value of time, which varies with the mix of journey purpose and income of the users

If we assume that traffic volume decreases 15% in 2018

VOT (b)	264
Speed 2016 (km/hr)	33
Speed 2018 (km/hr)	38
Traffic Volume 2016 (PCUs)	3009
Traffic Volume 2018 (PCUs)	2174

Therefore, Marginal congestion cost is 205

Source: CALCULATING TRANSPORT CONGESTION AND SCARCITY COSTS, Professor Chris Nash and Mr Tom, 1999 Sansom, (ITS) (UK model)

SCENARIOS: ORTHOGONAL ARRAY

Public Transport

Cost (fare)

+20%

Existing Cost

Travel Time

Existing time

-20%

Travel TimeCongestion CostParking Cost-10%160Existing Parking
Cost-20%200+20%-30%240+30%

Car

- > The first step for an **orthogonal array** is to **create the combinations of factor levels.**
- For the research finally three variables were selected for car commuters: Travel time, Congestion cost and Parking cost. For public transport two variable were selected travel time and travel cost (fare).
- An orthogonal array, is used as it determines both the relative importance of each attribute as well as which levels of each attribute are most preferred.

SCENARIOS : FRACTIONAL FACTORAL ARRAY

F 1

ľ

Ρι	ublic Transport	t	Card A		Car	
Card ID 1	Travel Time Reduction Same	Travel Cost Same		Travel Time Reduction -30%	Congestion cost 240	Parking Charge Existing Charge
Card ID 2	Travel Time Reduction Same	Travel Cost Same		Travel Time Reduction -10%	Congestion cost 160	Parking Charge Existing Charge
Cord ID	Travel Time	Travel Cost		Travel Time	Congestion cost	Darking Charge
3	-20%	+20%		-20%	160	+30%
Card ID 4	Travel Time Reduction Travel Cost -20% +20%			Travel Time Reduction -20%	Congestion cost 200	Parking Charge Existing Charge
					oth	C Vrban Mobility India

)nference & Expo

Planning Mobility for City's Sustainability

16

SCENARIOS : FRACTIONAL FACTORAL ARRAY

Р	ublic Transpo	rt	Card	B	Car		
Card ID	Travel Time Reduction	Travel Cost		Travel Time Reduction	Congestion cost	Parking Charge	
1	Same	Same		-20%	160	+30%	
Travel Time Card ID Reduction		Travel Cost		Travel Time Reduction	Congestion cost	Parking Charge	
2 Same		Same	-30%		160	+20%	
	Travel Time			Travel Time			
Card ID	Reduction	Travel Cost		Reduction	Congestion cost	Parking Charge	
3	-20%	+20%		-30%	200	+30%	
	Travel Time			Travel Time			
Card ID	Reduction	Travel Cost		Reduction	Congestion cost	Parking Charge	
4	-20% +20%			-30%	240	Existing Charge	
					oth 🗲	Clirban Mobility India	

)nference & Expo

Planning Mobility for City's Sustainability

BINARY CHOICE MODEL

BINARY CHOICE MODEL IS ADOPTED: CHOICE BETWEEN CAR OR PUBLIC TRANSPORT

- Here the task is directly related to the estimation of utility levels; and not towards finding the strength of each variable which determines an individual's choice of shifting to public transport. Thus, Binary Logit model is used for the research.
- Three main attributes were : Congestion Cost, Parking Cost and Travel time.
- Objective was to see which attribute influences people's choice of mode.

MODE CHOICE: ANALYSIS

							95% C.I.fo	r EXP(B)
	В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Travel Time			145.548	3	.000			
Travel time reduced (-10%)	4.459	.700	40.556	1	.000	86.407	21.905	340.839
Travel time reduced (-20%)	1.103	.262	17.712	1	.000	3.012	1.802	5.034
Congestion Cost (Rs 200)	611	.272	5.067	1	.024	.543	.319	.924
Parking Cost	.048	.007	48.128	1	.000	1.049	1.035	1.063
Constant	-4.854	.696	48.696	1	.000	.008		

Choice: Car/Public Transport

- As there is an inverse relationship of travel time with choice of mode, it shows people are time sensitive.
- Congestion cost also shows inverse relationship with choice of mode, explaining respondents are cost sensitive too.
- But, parking cost doesn't affect people's choice for a particular mode.

MODE CHOICE: ANALYSIS

	Congestion Cost	Travel Time	Parking	Utility	Exponential	% shift to PT
Scenario 1	160	36	100	-0.746	0.474259803	13%
Scenario 2	200	36	100	-0.426	0.653116342	18%
Scenario 3	240	36	100	-0.106	0.899424648	23%

From the above three scenario's it can be interpreted, Congestion charge of Rs 240 would lead to maximum number of shift of mode from private cars to public transport.

MODE CHOICE: ANALYSIS

Without Congestion Charge

With Congestion Charge

Roads	Capacity	2016 (PCU counts) Existing	2018 (PCU counts) BAU	2016 (v/c)	2018 (v/c)	2016 (PCU counts)26% shift to PT	2018 (PCU counts)26% shift to PT	2016 (v/c)	2018 (v/c)
Janpath	6000	5350	6126	0.9	1	3959	4533	0.7	0.8
K.G marg	4000	5543	6346	1.4	1.6	4102	4696	1.0	1.2
Barakhamba Road	4000	6839	7830	1.7	2	5061	5794	1.3	1.4
Vivekanand Road	4000	5723	6552	1.4	1.6	4235	4848	1.1	1.2
Panchkuian Road	6000	4856	5560	0.8	1.4	3593	4114	0.6	0.7
Baba kadhak Singh Marg	4000	7334	8396	1.8	2 1	5427	6213	1 4	1 6
Sansad marg	4000	3815	4368	1.0	1.1	2823	3232	0.7	0.8
Chelmsfoed Road	4000	3319	3800	0.8	1	2456	2812	0.6	0.7

CONCLUSION

- People are time sensitive as well as cost sensitive (Congestion cost).
- 13-26% respondent will shift to Public Transport if congestion pricing scheme is implemented in Connaught Place.
- Congestion pricing measure in isolation too cannot fulfil the future needs.
- Some non-pricing measures should be promoted like carpooling, vehicle quota system, free ride in public transport before peak hours etc.
- People right now doesn't actually understand the idea of congestion pricing thus, when actually implemented the scenario would be different and more favorable.

THANK

"OHI ... A CAR WORSHIPPING NATION"

YOU

