

GUIDELINES FOR SELECTION OF APPROPRIATE PEDESTRIAN CROSSING FACILITY AT MID-BLOCK SECTIONS

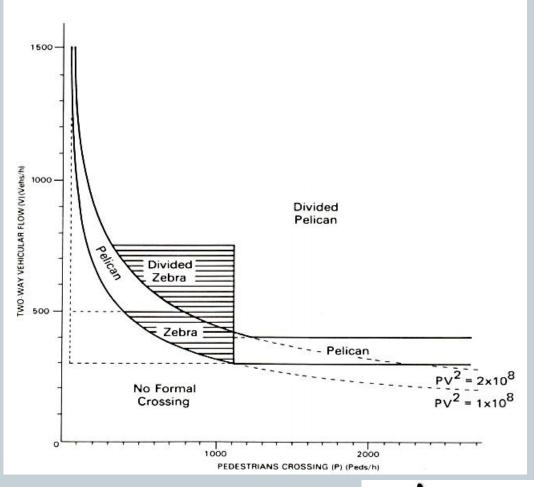
Udit Jain

Research Scholar

Indian Institute of Technology Roorkee

Need of the Study

- Pedestrian fatalities highest in road users
- 90% fatalities in Kota & Mumbai at Mid-Block
- 75% pedestrian crashes due to no facility (UK)
- Remaining 25% due to improper facility
- In India, IRC 103: 2012 does not recommend the type of crossing facility to be provided
- Solution: Develop Pedestrian Crossing Warrant Guidelines for Indian Conditions


PV² Based Warrants

- P Peak Hour Pedestrian Volume (ped/hr)
- V Peak Hour Vehicular Volume (veh/hr)
- PV² based crossing warrants first introduced in UK in 1987
- Also used in other countries like India and Iran

PV² Based Warrants in UK

- Graphical Form
- PV2 thresholds -
 - $PV^2 = 1 \times 10^8$
 - $PV^2 = 2 \times 10^8$
- Recommends crossing facilities
- Based on peak traffic flows of 1980s

Adaptations of PV² Based Warrants

- Several counties in UK modified this criteria after LTN-1/95
- Maintains balance between PV² & pedestrian characteristics
- Uses factors like Age, Waiting Time, Gap Size to suggest facilities based on Adjusted PV² values

PV² Based Warrants in India

- Indian Roads Congress Code, IRC-103 introduced in 1988
- Revised in 2012 No change in Pedestrian
 Crossing Warrants
- Warranting is recommended when either of the following is true:
 - 1. $PV^2 > 10^8$ for undivided roads or $PV^2 > 2 \times 10^8$ for divided roads
 - 2. Vehicle Speed > 65 kmph; or
 - 3. Waiting time for pedestrian/vehicle too long; or
 - 4. Pedestrian injuries > 5 per year

PV² Based Warrants in India

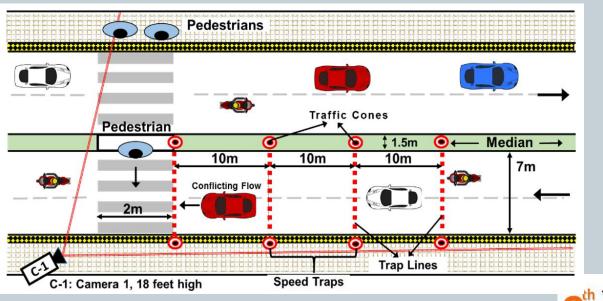
- Limitations
 - Threshold values same as UK
 - > No warrant chart or graph
 - > No recommendation of facility type
 - > Ambiguity in parameters used
 - Based on traffic flows of 1980s
- Need of revision of pedestrian crossing warrants

Objectives

- Develop warrants based on existing traffic flow conditions
- Re-examine the existing threshold values of PV²
- Identify the type of crossing facilities to be installed

Methodology

- Maximum Hourly Vehicle Flow (V)
- Maximum Hourly Pedestrian Flow (P)
 - Critical Gap
 - Follow Up Time
- PV² Matrices Upper Limits 'P' and 'V'
- PV² Values Data Set
- New PV² Threshold Values
 - Cluster Analysis
- Pedestrian Crossing Warrants


Data Requirements

- 1. Maximum Hourly Vehicle Flow (V)
 - Vehicle Flow
 - Vehicle Speed
- 2. Maximum Hourly Pedestrian Flow (P)
 - Pedestrian Flow
 - Critical Gap
 - Follow up Time

Data Collection & Extraction

S.No	Site Code	City	Location	Road Configuration
1	Site A	Chandigarh	Sec 17 ISBT	2 Lane Undivided
2	Site B	Chandigarh	Sukhna Lake	3 Lane Undivided
3	Site C	Delhi	Laxmi Nagar	4 Lane Divided
4	Site D	Delhi	Dwarka sec 6	6 Lane Divided

Data Collection & Extraction

• Videography with Trap markings

Aerial View of the Site

Data Collection & Extraction

• Frame by frame data extraction

Camera View of the Site

Max Hourly Vehicle Flow (V)

 Max Hourly Vehicle Flow using Greenshields model

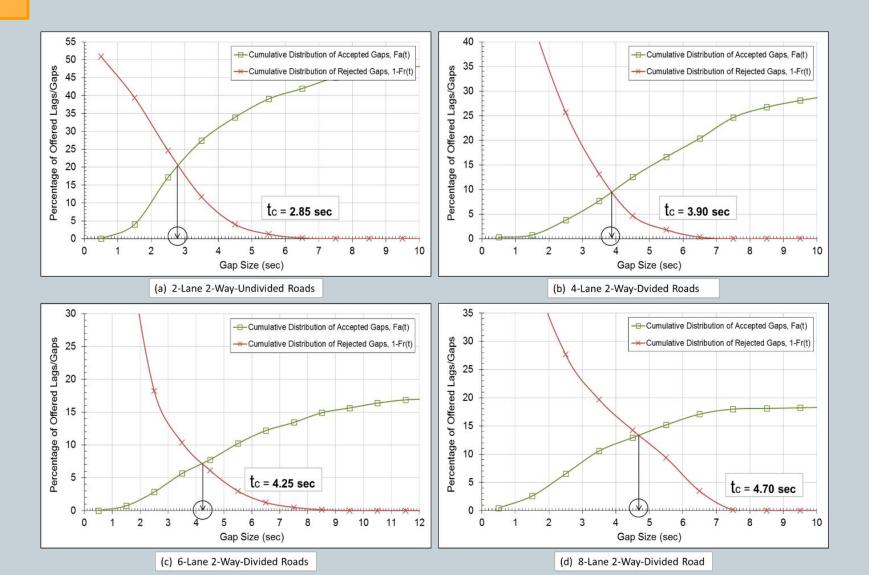
Site Code	Roadway Configuration	Max Hourly Vehicle Flow (PCU/hr)
Site A	2 Lane 2 Way Undivided	3,018
Site B	3 Lane 2 Way Undivided	4,672
Site C	4 Lane 2 Way Divided	8,172
Site D	6 Lane 2 Way Divided	12,630

Max Hourly Pedestrian Flow (P)

 Maximum Hourly Pedestrian Flow by maximization of the HCM 2010 model

$$\max\left(c_{px} = v_{cx} \frac{e^{-v_{cx}t_{cx}/3600}}{1 - e^{-v_{cx}t_{fx}/3600}}\right)$$

subject to: v_{cx} , t_{cx} , $t_{fx} > 0$


Where,

- c_{px} Potential capacity of pedestrians; v_{cx} Conflicting major stream vehicle flow rate;

 t_{cx}^{tx} – Critical gap for pedestrians; t_{fx} – Follow-up time for pedestrians (0.80 sec)

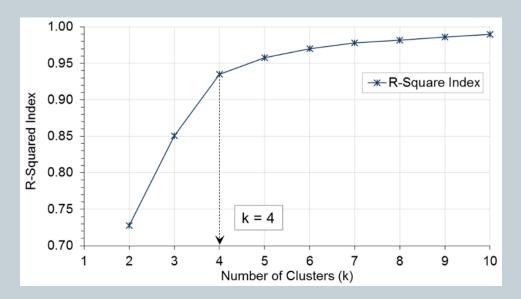
Critical Gap Analysis – Raff's Method

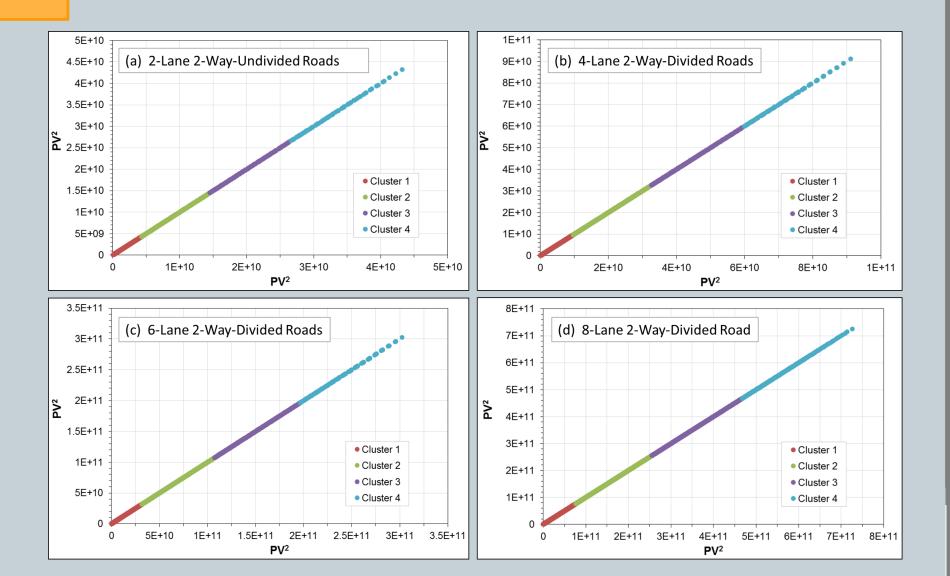
Max Hourly Pedestrian Flow (P)

$$\max\left(c_{px} = v_{cx} \frac{e^{-v_{cx}t_{cx}/3600}}{1 - e^{-v_{cx}t_{fx}/3600}}\right) \text{ subject to: } v_{cx}, t_{cx}, t_{fx} > 0$$

- Maximum hourly pedestrian flow ~ 4,500 ped/hr for all four road configurations
- Verification based on IRC:103 (2012)
 - Pedestrian flow rate for high densities (LOS E) = 36 ped/min/meter
 - For crosswalk width of 2 meters
 - Maximum Hourly Flow similar to HCM estimates

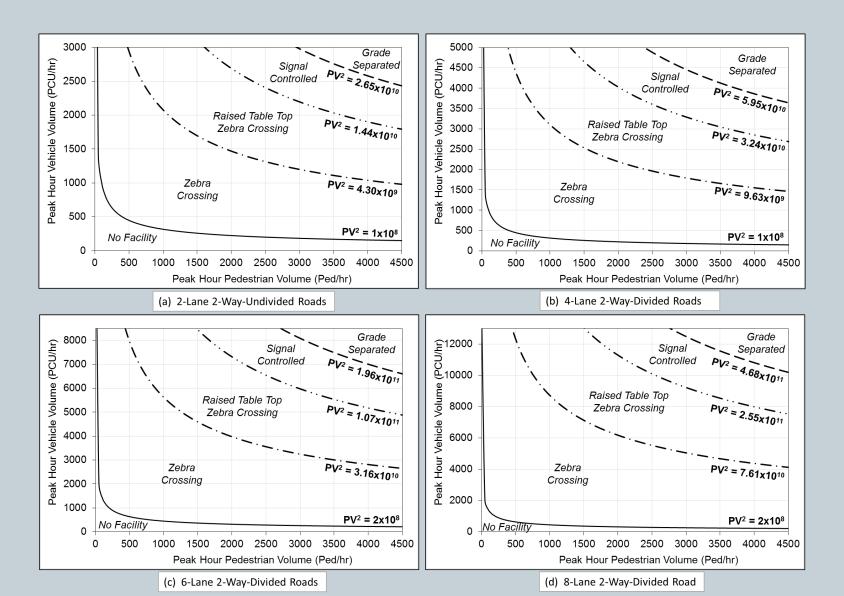
PV² Analysis – Matrices


P\V	100	200	300	••	 ••		••	'V'
100	1.0.E+06	4.0.E+06	9.0.E+06		 			
200	2.0.E+06	8.0.E+06	1.8.E+07		 			
300	3.0.E+06	1.2.E+07	2.7.E+07		 			
				••	 ••	••	••	
	••				 ••	••	••	••
					 ••			
	••				 ••	••	••	
'P'					 			PV ²


- K-means clustering technique suitable for dense data sets (Wu et al., 2009)
- Number of clusters (k) identified using cluster validation indices
 - Davies-Bouldin Index
 - Silhouette Index
 - Calinski-Harabasz Index
 - Dunn Index
 - R Squared Index

- Four Indices were found to be inconclusive due to indistinct minima and maxima values
- Using the elbow of the R-squared index, k = 4

 K-means clustering algorithm with squared Euclidean distance implemented in MATLAB[™] with k = 4


Cluster	2-Lane	4-Lane	6-Lane	8-Lane	
Cluster	2-Way	2-Way	2-Way	2-Way	
1	4.30 x 10 ⁹	9.63 x 10 ⁹	3.16 x 10 ¹⁰	7.61 x 10 ¹⁰	
2	1.44 x 10 ¹⁰	3.24 x 10 ¹⁰	1.07 x 10 ¹¹	2.55 x 10 ¹¹	
3	2.65 x 10 ¹⁰	5.95 x 10 ¹⁰	1.96 x 10 ¹¹	4.68 x 10 ¹¹	
4	4.09 x 10 ¹⁰	9.09 x 10 ¹⁰	3.00 x 10 ¹¹	7.17 x 10 ¹¹	

Creasing Facility#*	PV ² Value Ranges*					
Crossing Facility**	2-Lane 2-Way	4-Lane 2-Way	6-Lane 2-Way	8-Lane 2-Way		
No Facility	< 1.00 x 10 ⁸	< 1.00 x 10 ⁸	< 2.00 x 10 ⁸	< 2.00 x 10 ⁸		
Zebra Crossing	1.00 x 10 ⁸ – 4.30 x 10 ⁹	1.00 x 10 ⁸ – 9.63 x 10 ⁹	2.00 x 10 ⁸ – 3.16 x 10 ¹⁰	2.00 x 10 ⁸ – 7.61 x 10 ¹⁰		
Zebra with Speed Table	4.30 x 10 ⁹ – 1.44x 10 ¹⁰	9.63 x 10 ⁹ – 3.24 x 10 ¹⁰	3.16 x 10 ¹⁰ – 1.07 x 10 ¹¹	7.61 x 10 ¹⁰ – 2.55 x 10 ¹¹		
Signal Controlled	1.44 x 10 ¹⁰ – 2.65 x 10 ¹⁰	3.24 x 10 ¹⁰ – 5.95 x 10 ¹⁰	1.07 x 10 ¹¹ - 1.96 x 10 ¹¹	2.55 x 10 ¹¹ – 4.68 x 10 ¹¹		
Grade Separated	> 2.65 x 10 ¹⁰	> 5.95 x 10 ¹⁰	> 1.96 x 10 ¹¹	> 4.68 x 10 ¹¹		

*Where 'P' is the Peak Hour Pedestrian Flow & 'V' is the Peak Hour Vehicle Flow of both directions

**It is recommended that the design specifications of these facilities should be as per IRC-103:2012

Warrant Charts

Application & Validation

Site	Location	Lanes	P (Ped/hr)	V (PCU/hr)	PV ²	Existing Facility	Recommended Facility
A	Sector-17 ISBT	2 Lane	4,080	1,276	6.55E+09	Unprotected	Zebra w/ speed table
В	Sukhna Lake Road	3 Lane	3,780	3,266	4.03E+10	Zebra Crossing	Zebra w/ speed table
С	Laxmi Nagar	4 Lane	2,760	7,248	1.45E+11	Zebra Crossing	Signal Controlled
D	Dwarka Sector-6	6 Lane	3,360	4,604	7.12E+10	Unprotected	Zebra Crossing
E	Prithviraj Road	4 Lane	1,760	4,286	3.23E+10	Signal Controlled	Zebra w/ speed table
F	Aurobindo Marg	6 Lane	3,960	8,061	2.57E+11	Signal Controlled	Signal Controlled
G	Old Fort	6 Lane	1,880	7,885	1.17E+11	Signal Controlled	Zebra w/ speed table
Н	ITO PWD Headquarter	6 Lane	1,840	8,624	1.37E+11	Grade Separated	Zebra w/ speed table
I	Kotla Mubarakpur	6 Lane	1,260	7,422	6.94E+10	Grade Separated	Zebra Crossing
J	Anand Vihar ISBT	6 Lane	4,398	10,755	5.09E+11	Grade Separated	Grade Separated

Limitations

- Warrants based on peak flows observed in India
- Factors like delay and gap size can also be explored as a part of the warrant criteria

Thank You

Provide appropriate crossing facilities to ensure pedestrian safety at crossing locations

Udit Jain

Research Scholar, IIT Roorkee

