

Mobility demand estimation in Smart Cities using mobile phone data

Dr Rajesh Krishnan

Outline

- The context
- Mobile phone data
- Methodology
- Demonstration project
- Summary

The context – travel demand

- Travel demand data
 - Where are people coming from?
 - Where are people going to?
 - When do they travel?
- Demand data represented as Origin-Destination (OD) matrices

OD estimation – traditional approach

The traditional	Time consuming
survey based	Expensive
approach	Low sample size

Crude approximation of demand variation over the course of a day

Rapid urbanisation – data becomes out-of-date fast for operational use

Can miss micro-patterns

OD estimation – for Smart Cities

Is there a better way?

Urban Mobility India (UMI) Conference 2017

Mobile phone data

Mobile phone data

- Mobile phone penetration is high in developing and developed countries
 - India's mobile density in urban areas is more than 100 %
- The telecom systems needs to keep track of where each device is
 - For routing calls and data
- Anonymised Call Detail Records (CDR) and Location Based Service (LBS) data available from mobile operators contain subscriber movement patterns
- Advances in ICT enable processing of large data sets (a.k.a. big data and fast data tools)

Call Unique id of the device (pseudonymised) Data Records Timestamp

Id of the mobile tower

(Other data)

CALL DATE TIME	CELL ID	PSEUDONYMISED IMEI
01/09/2013:00:11:14	21651	125060002848
01/09/2013:00:08:34	17541	434904788264
01/09/2013:00:10:54	38032	699404646397
01/09/2013:00:06:09	32272	620105228445
01/09/2013:00:10:58	15901	189305066902

Location
Based
Service
(LBS)
dataUnique id of the device (pseudonymised)TimestampLatitude & Longitude

(Other data)

Device Number	Result Date	Latitude	Longitude
User-1	22/08/2017 11:10	19.0064	72.8383
User-2	22/08/2017 11:05	19.0074	72.8407
User-3	22/08/2017 11:01	19.0062	72.8407
User-4	22/08/2017 11:00	19.0074	72.8407
User-5	22/08/2017 10:55	19.0074	72.8407

OD estimation methodology

Carried out in collaboration with CDAC

Accuracy evaluation

- Screen-line count error (MAPE) of 9.6%
- CDR data
 - Mobile phone data from roughly 15%
 - of the population
 - Manual traffic surveys for calibration

Study area

- South Mumbai between Colaba and Dadar
- Area of 67.7 sq.km and a population of 3.3 million
- Area divided into 36 Traffic Analysis

 - Zones (TAZ) and 3 external zones
 - Geographic locations of cell towers were used to generate Voronoi cells
 - Voronoi cells were merged to form TAZs, roughly mapping to localities

OD estimation –demonstration project

Summary

The method has been in use for the past 7-8 years

- Methodology used by a number of transport departments across the world. E.g.
 - Department for Transport, UK
 - Transport for London
- We should incorporate this element in our Smart Cities
 - Understanding the problem is the first step in solving it!

Thank you

Dr Rajesh Krishnan ITS Planners and Engineers rajesh.krishnan@itspe.co.in

Urban Mobility India (UMI) Conference 2017