

GOVERNMENT OF INDIA MINISTRY OF HOUSING AND URBAN AFFAIRS

Urban Mobility & Climate Change Global & India Perspective

Nupur Gupta, Sr. Transport Specialist The World Bank

Presentation Structure

- Global Green Transport Scenario
- Urban Agenda
- India Urban Green Transport Scenario

Transport Emissions

World energy related CO2 emissions by sector in 2013, IEA

Most of the growth in recent years stems from outside high income OECD

At a global level transport emissions are produced by a handful of countries

At a global level transport emissions are produced by a handful of countries

Urban Agenda

And incomes and motorization rates are growing

Total LDV ownership is expected to double in the next few decades (IEA, 2009) from the current level of around 1 billion vehicles. Two-thirds of this growth is expected in non-OECD countries.

Cars carry the lowest number of trips but cause the largest portion of emissions

Source: ICCT

India Urban Mobility Model

D Population will double by 2050

□ Tier I and Tier III constitute 70%

Number of cities in each Tier

	City class in 2050			
City class in 2010	I	II	III	IV
l.	5	0	0	0
II	4	0	0	0
Ш	0	14	30	0
IV	0	0	53	0

□ Passenger demand will quadruple by 2050

□ Highest increase occurs in Tier I and Tier III

• Share of PKM for each share

	City Tier	2010	2030	2050
/	I.	60%	62%	58%
I	Ш	10%	10%	11%
	ш	22%	21%	24%
	IV	8%	7%	8%

12

- □ Car ownership will grow from 52 to 231 per 1000 inhabitants
- **2W** ownership will grow from 183 to 352 per 1000 inhabitants

- □ Formal buses per lakh decrease from 18 to 12 per lakh
- □ Share of private bus increases from 50% to 60%

□ Metro network length grows from 217km to 2813km

As planned, 250 000 million rupees per year are 100% spent on metro network construction and expansion, according to the existing and future plans.

- □ Private mode share will increase from 30% to 48%
- □ NMT mode share will decrease from 38% to 21%

- □ CO₂ emissions in 2050 is nearly <u>EIGHT</u> times the 2010 level.
- □ Larger cities emit much more due to the prevalence of cars
- □ 80% of the emissions comes from Tier I and Tier III

 CO_2 emissions by tier (WTT + TTW)

17

- **Private car is the main contributor to the increase in TTW CO2 emissions.**
- Metro and rail are the main contributor to the WTT emissions, representing more than 60% in 2010 and decreases to 45% in 2050.

- Without clean electricity, mode shift to metro will not transform into CO₂ savings
- Share of WTT in the total emissions goes down from 35% in 2010 to 29% in 2050

18

ALTERNATIVE POLICY SCENARIOS

Investment policies

Shared mobility

Vehicle technology

Indicative strategies of allocating available funding

Available money per year (million rupees) 250 000

Scenarios	Pop > 4M	Pop 1M - 4M	Pop < 1M	% of funding allocated	% of funding utilised
Bus only scenario	37%	40%	21%	98%	87%
BRT only scenario	10%	22%	13%	45%	45%
NMT only scenario	15%	9%	4%	28%	27%
Bus + MT + NMT scenario	10% MT, 20% Bus, 6% NMT	12% MT, 25% Bus, 5% NMT	0% MT, 20% Bus, 2% NMT	100%	91%

Mixed investment strategy has the highest CO₂ mitigation potential in cities

21

Bus and mixed investment strategy have the highest efficiency (CO₂ per PKM)

CO₂ emissions per passenger-kilometre in 2050

Mixed and bus only investment strategy have the highest impacts on containing the growth of private vehicle ownership

Vehicle ownerships in 2050

□ Bus and mixed scenarios give more sustainable mode shares

KEY TAKEAWAYS FOR MAXIMUM IMPACTS

- Combination of mode investments yield superior outcomes -Integration
- □ Encourage low cost high impact Bus and NMT investments in combination with or without mass transit
- **Investing in mass rapid transit in isolation is suboptimal**
- Focus on Tier 3 cities with differentiated strategies compared to Tier 1 & 2

- □ Introducing only the shared-taxi (4 pax) service has the risk of increasing CO₂ emissions, because the current car share is low.
- □ CO₂ benefits can be achieved when taxi-bus (16 pax) service takes high percentage of the shared vehicle fleet.

VEHICLE TECHNOLOGY SCENARIOS

□ Introducing alternative vehicle technology pathway on top of the most effective scenario "Bus + MT + NMT"

Scenarios	Bus, BRT	2W, 3W	Car	
2DS Tech Path	2DS Fuel Eco, 2DS Fuel Share	2DS Fuel Eco, 2DS Fuel Share	2DS Fuel Eco, 2DS Fuel Share	
High Electrification	40% elec. by 2030, 70% elec. by 2050, 4DS WTT		40% elec. by 2030, 70% elec. by 2050, 4DS WTT	

□ IEA's 2DS lays out an energy system deployment pathway and an emissions trajectory consistent with at least a 50% chance of limiting the average global temperature increase to 2°C.

27

VEHICLE TECHNOLOGY SCENARIOS

- **D** 2DS vehicle technology pathway, CO₂ emissions reduced further by 80mt
- □ High electrification scenario reduces CO2 emissions by 56mt
- But do not address sustainable mobility objectives (i.e. private vehicle use, congestion), in a way that the mixed strategy does

VEHICLE TECHNOLOGY SCENARIOS

- Combining the mixed strategy with 2DS/High electrification can address both CO₂ and sustainable mobility objectives
- **G** Focus next on clean source of electricity in high electrification scenario

KEY TAKEAWAYS FOR MAXIMUM IMPACTS

- **Operationalize all policy levers together**
- Focus on Tier 3 cities with differentiated strategies compared to Tier 1 & 2
- Controlling the urban footprint expansion for compact cities
- Encourage low cost high impact Bus and NMT investments in combination or without mass transit
- **C** Emphasize high occupancy shared mobility
- **Greening the Grid essential for realizing the electric mobility benefits**
- **□** Electric mobility strategy within the larger urban mobility strategy

Thank You

ngupta1@worldbank.org

INTRODUCTION

□ A policy simulation tool to identify cost-efficient urban mobility pathways for mitigating CO₂ emissions in Indian cities.

Excel-based tool

D Policies that can be tested with the tool:

- Transport infrastructure investment
- Urban area growth
- Demand-management measures
- Vehicle technology
- Shared mobility

□ Joint work between the World Bank and the International Transport Forum with local data and technical support provided by TERI.

MODEL SCOPE

□ Analysis carried out for all cities (population >500K) in India

Exhaustive city-specific data collection by TERI for 108 cities

UA pop (2011)	City Tier	NO. of Cities	Cities Included
>8 Million	I	5	Mumbai, Delhi, Bangalore, Kolkata, Chennai
4 - 8 Million	Ш	4	Hyderabad, Ahmedabad, Pune, Surat
1 - 4 Million	Ш	44	Jaipur, Lucknow, Vijayawada, etc.
0.5 -1 Million	IV	55	Amaravati, Mathura, Bhubaneswar, etc.

□ The model captures aggregate relationships (not a projection model for each city)

MODEL FRAMEWORK

