E-MOBILITY - Operator's Perspective

V. Ponnuraj, IAS, MD BMTC

Bringing Bengaluru to your doorstep...

NEED FOR CLEAN TRANSPORT

- India has 13 of the top 20 world's most polluted cities
- PM concentrations across major Metros in India are already into violation of National Ambient Air Quality Standard
 120
 - **Transport sector main contributor**
- According to a recent research paper published by the university of Chicago ambient air pollution is costing India up to USD 500 billion a year*
- Trucks and Buses contribute over 50% to the PM10 emissions₄₀ in transport.

CURRENT CO2 EQ. EMISSIONS (IISC REPORT)

BMTC AT A GLANCE

Born on **15 Aug 1997** <u></u> 6400 Buses (850 AC Buses) 6174 Schedules **49** Depots, **53** Bus Stations 70872 Daily Trips

45 lakh Passengers Daily

11.48 lakh service *Kilometres per day*

Bringing Bengaluru to your doorstep...

WHY E- Mobility

- Zero Local Pollution
- Reduced Noise Pollution
- Reduction in Fuel Cost Rs 6/km Vs Rs 26/km
- Flucuating diesel prices to stable electricity tarrif linked to PPAs
- Easy to Maintain moving parts 300 to 3
- Reduced Manpower Req for Maintence 1/bus to 1/15 buses
- Reduction in off-road buses 4% to <1%

Challenges in Adoption of EVs

- High Inital Cost -Opex Models (GCC)
- New & evolving technology assign tech & maintenance risk to SP
- Lack of domestic manufcaturing capacity allow consortiums
- Dependance on foteign suppliers long term service contracts
- Need for initial govt support FAME I is a very good support
- Need to come out of govt support for large scale adoption volume game
- Lack of Contracts Management Capacity purchase to service contracts

Challenges in Adoption of EVs

- Opex Models will reduce manpower cost for RTCs
- Capacity Building for Contact Management with in RTCs need to be done
- Grid Dependancy :
 - Initial : Planning for charging technology and charging locations
 - Full Scale : Battery Swapping, Oppurtunity Charging and routing plan optimisation
- Role of State Govts GoK EV policy, EV cell in BESCOM
- EV adoption rate Vs Diesel bus scrap rate

WHY GROSS COST MODEL

- Evolving Technology
 - Challenges in choosing the right technology for BMTC operations
 - ✤ High risk involved
 - ✤ Size of battery Vs Range Anxiety
- High Capital Cost ; Battery cost is 60% of bus cost
 - Funding constraint for direct procurement
 - ✤ No upfront investment from STU
- No Manufacturer in India
 - ✤ Maintenance depends on foreign OEM
 - ✤ Spare parts availability
- Lack of Technical Know-How for Operation and Maintenance of Electric buses
 - ✤ Operator made responsible for operating and maintaining the buses
 - Performance driven approach

STEPS FOLLOWED FOR TENDERING

- **Pilot project**: 2 Electric Buses deployed earlier to study performance
- Convened **Stake holder consultation** prior to floating of RFP :
 - ✤ Major STUs
 - ✤ Industry Expert
 - ✤ All OEMs
- Utilized the services of organization like CSTEP, WRI & IFC for structuring of RFP
- Convened two rounds of Contract Management Group (CMG) Meetings
- Convened two rounds of pre bid meeting after floating RFP to understand the concerns of the stake holders Technology, better role clarity & market capacity
- Approval of Evaluation by Tender Approval Committee

COST COMPARISION ACROSS STATES

Reduced tariff for higher Bus Kilometers

Bus Kilometres	Rate /km for AC bus In Rs/Km		Rate for Non AC bus In Rs/Km	
	Effective rate	Reduction	Effective rate Rs/km	Reduction
	Rs/km	In Rs/km		In Rs/km
200 Assured*	37.35		24.03	
225	36.42	0.93	23.43	0.60
250	35.48	1.87	22.83	1.20
275	34.55	2.80	22.23	1.80
300	33.62	3.73	21.63	2.40
301 and above	32.68	4.67	21.03	3.00

• CPKM of EV-AC buses will be much less than the present CPKM of even the ordinary buses.

Bringing Bengaluru to your doorstep...

REASONS FOR GETTING LEAST QUOTE

- Technology agnostic
 - Specified only broad specs like floor height, seating capacity, bus dimension
 - Battery swapping
- Single bidder v/s Consortium
 - $\checkmark\,$ Restriction of only the Bus manufacturer to come-in relaxed
 - ✓ Consortium of OEM, Operator and Financer allowed
- ITS data Actual running data provided to the Bidders
- **Deployment Plan** shared For clarity on likely EPKM & CPKM to assess financial viability,
 - $\checkmark~$ Low cost financing from the financers was made possible

REASONS FOR GETTING LEAST QUOTE

- Bus code Existing bus reference shared for easy understanding of BMTC's requirement
- Assurance of at least 200 Bus kilometers
- Assurance of payment **Escrow** account provision under the contract
- Buses to be owned by the Operator at the end of the contract

TCO - ICE Vs EV (AC -10 years)

- ICE:
- Purchase Price: Rs 1 Cr
- Fuel Cost :
 - 90x70x365x10 = Rs 2.32 cr
- Maintenance Cost:
 - 200x8x365x10 = Rs 0.54 cr
- Total Cost of Ownership:

- Purchase Price: Rs 2 cr
- Fuel Cost:
 - 200x6x365x10 = Rs 0.43cr
 - Maintenance Cost:
 - 200x3x365x10= Rs 0.21 Cr
 - Total Cost of Ownership:
 - = Rs 2.64 cr

TCO - ICE Vs EV (NON AC -10 Y)

- ICE:
- Purchase Price: Rs 0.3 Cr
- Fuel Cost :
 - 50x70x365x10 = Rs 1.27 cr
- Maintenance Cost:
 - 200x3x365x10 = Rs 0.21cr
- Total Cost of Ownership:
- = Rs 1.78 cr

- EV:
- Purchase Price: Rs 0.75 cr
- Fuel Cost:
 - 180x6x365x10 = Rs 0.39cr
 - Maintenance Cost:
 - 200x2.5x365x10= Rs 0.18 Cr
 - Total Cost of Ownership:
 - = Rs 1.32cr

ROAD MAP FOR BMTC - EV FLEET

- 80 buses by 2018
- 500 buses by 2019
- 1000 buses by 2021
- 1000 buses by 2023
- 1000 buses by 2025
- 3000 buses by 2030

Future of Urban Mobility Looks to be Electrified....

THANK YOU!

