

Enhancing the Transferability Accuracy of Urban Freight Demand Models using a Novel Establishment Typology

Bhavani Shankar B., Agnivesh Pani, Prasanta K. Sahu

Presenter

Bhavani Shankar B. Ph.D. Scholar

BITS Pilani – Hyderabad Campus

Why Freight Demand Models?

Truck Movement

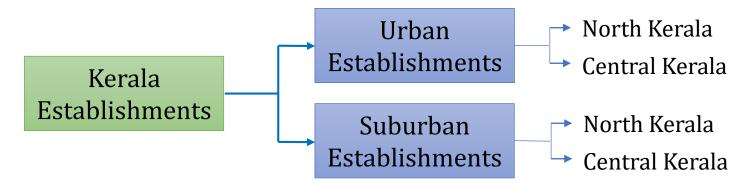
Congestion

Pollution

Pavement Deterioration

Why Freight Demand Models?

INDIAN SCENARIO


- More importance to passenger traffic
- Manufacturing sector in India was highly influenced by the launch of the 'Make in India' program
- Due to exponential growth of industries, the nationwide freight movement is estimated to grow annually at 9.7% by 2031-32 and will surpass 13,000 BTKM (Billion-Ton-Kilometer) (National Transport Development Policy Committee, 2014)

Why Transferability?

- Limited resources for data collection
- As per the literature, the total establishment-based freight survey (EBFS) costs were around *\$600,000* in Calgary during 2000 (\$198 per completed response) and \$800,000 in Edmonton (\$185 per completed response) during 2002 (Hunt et al., 2006).
- The unit cost was €400 (approximately \$500) per completed response in Paris during 2012 (Toilier et al., 2016).
- It is apparent that the choice of survey method influences to the EBFS cost. For example, face-to-face interviews aided with postal or telephonic contact is relatively costlier and time consuming than other methods.
- Postal and web- based questionnaire surveys are reported with significantly less cost than erstwhile methods (Lawson, 2002). The cost of web-based survey conducted in USA was \$40,000 (\$126 per establishment or \$40 per shipment response).

Data Description

- Study Area: Kerala State
- Establishment-based Freight Survey (EBFS) Face to face interview - 432 responses
- Variables: Weekly Freight Attraction (FA), Number of employees (NE), Gross Floor Area of establishment (GFA)

Modelling Methods

- Parametric Models
 - Ordinary Least Square (OLS) Regression
 - Robust Regression
- Non-parametric Models
 - Multiple Classification Analysis
 - Support Vector Regression

Summary of Parametric Models

Term	OLS	RR	Term	OLS	RR			
Employ	yment-based	FP Models	Area-b	Area-based FP Models				
North Kerala Urban (NKU) Establishment Models								
NE	0.620***	0.389***	GFA	2.569***	1.834***			
R ²	0.505	0.646	R^2	0.589	0.681			
MAE	12.821	12.625	MAE	12.313	11.729			
North Kerala Suburban (NKS) Establishment Models								
NE	1.665***	1.610***	GFA	3.469***	2.966***			
R ²	0.844	0.857	R^2	0.729	0.841			
MAE	13.470	13.400	MAE	15.821	14.892			
Central Kerala Urban (CKU) Establishment Models								
NE	0.620***	0.389***	GFA	1.933***	1.575***			
R ²	0.505	0.646	R^2	0.561	0.701			
MAE	12.763	12.797	MAE	12.408	11.996			
Central Kerala Suburban (CKS) Establishment Models								
NE	0.518***	0.491***	GFA	2.135***	1.825***			
R ²	0.591	0.707	\mathbb{R}^2	0.517	0.724			
MAE	15.533	15.329	MAE	15.743	15.226			
Note: (1) *** represents p < 0.001; (2) GFA in 100 m ² ; (3) FP in tons per week								

Summary of Non-Parametric Models

Multiple Classification Analysis									
Employment Levels	North Kerala Urban	North Kerala Suburban		Central Kerala Urban		Central Kerala Suburban			
0 - 15	11.990	13.470		11.637		11.249			
15 - 30	25.025	30.370		21.722		19.077			
30 - 45	23.987	65.390	18.379			36.508			
≥ 45	40.011	125.00		37.975		40.744			
R ²	0.203 0.744			0.200			0.245		
MAE	13.484	13.160		13.099		15.997			
Area Levels (in m²)	North Kerala Urban	North Kerala Suburban		Central Kerala Urban		Central Kerala Suburban			
0 - 400	11.804	8.640	9.478		15.724				
400 - 800	18.655	21.080	21.080		17.468		24.674		
800 - 1200	21.862	43.890		18.379		32.293			
≥ 1200	39.436	77.390	34.489			37.188			
R ²	0.225	0.490	0.165		0.123				
MAE	13.165	16.850		13.099		16.641			
Support Vector Regression									
Employment-based F		Area-based FP Models							
		KS		NKU	NKS	CKU	CKS		
		4.240	MAE	11.035	16.098	11.820	14.036		
Note: In all the SVR models, the radial basis kernel function is used									

Transferability Assessment

 $Relative Absolute Transfer Error \% (RATE \%) = \left| \frac{RMSE_{transfer} - RMSE_{local}}{RMSE_{local}} \right| \times 100$

Root Mean Square Error (RMSE) =
$$\sqrt{\frac{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}{n}}$$

Ranking of Modelling Approaches based on RATE%

Application Context	Estimation Context	Transferability ranking based on RATE%
Employment-based F	^T P models	
NKU	NKS	SVR >> RR >> MCA > OLS
	СКИ	MCA >> SVR > RR > OLS
	CKS	$SVR \approx OLS > MCA > RR$
NKS	NKU	$MCA \approx SVR >> OLS >> RR$
	СКИ	SVR > MCA >> OLS > RR
	CKS	MCA > SVR >> OLS > RR
СКИ	NKU	RR > MCA > SVR >> OLS
	NKS	SVR >> MCA > RR > OLS
	CKS	RR > OLS > SVR > MCA
CKS	NKU	RR > MCA > SVR >> OLS
	NKS	SVR >> MCA >> RR \approx OLS
	СКИ	RR >> OLS > SVR > MCA
Area-based FP models	S	
NKU	NKS	$SVR \approx RR > OLS >> MCA$
	СКИ	$MCA > RR \approx OLS > SVR$
	CKS	$RR > SVR \approx OLS > MCA$
NKS	NKU	$OLS >> RR > MCA \approx SVR$
	СКИ	OLS > SVR > MCA > RR
	CKS	$OLS > SVR > MCA \approx RR$
СКИ	NKU	$MCA \approx SVR > RR >> OLS$
	NKS	SVR > RR >> OLS >> MCA
	CKS	OLS > RR > SVR >> MCA
CKS	NKU	$OLS > SVR \approx MCA > OLS$
	NKS	$SVR \approx RR >> MCA \approx OLS$
	СКИ	RR > OLS > MCA > SVR

Summary of Preferred Modelling Approaches

			Application Context								
			Employment-based FP models				Area-based FP models				
			North Kerala		Central Kerala		North Kerala		Central Kerala		
			Urban	Suburban	Urban	Suburban	Urban	Suburban	Urban	Suburban	
Estimation Context	North Kerala	Urban	-	SVR	MCA	SVR, OLS	-	SVR, RR	МСА	RR	
		Suburban	MCA, SVR	-	SVR	MCA	OLS	-	OLS	OLS	
	Central Kerala	Urban	RR	SVR	-	RR	MCA, SVR	SVR	-	OLS	
	Centra	Suburban	RR	SVR	RR	-	OLS	SVR, RR	RR	-	

Among all the modelling approaches, the nonparametric models show better prediction ability

The employment and area-based FP models show that the direction of transferability is not symmetric.

In both models, the extent of transferability of models developed with non-parametric approaches is more than that of models developed with parametric methods.

In intra-regional (urban to urban or suburban to suburban) transferability, the extent of transferability of non-parametric approaches is more.

If the urban model is transferred to suburban, it is seen that both parametric and non-parametric models have shown good transferability.

Closing Remarks

Selected References

- Hunt, J.D., Stefan, K.J., Brownlee, A.T., 2006. Establishment-based survey of urban commercial vehicle movements in Alberta, Canada survey design, implementation, and results. Transp. Res. Rec. J. Transp. Res. Board 75–83. <u>https://doi.org/10.3141/1957-11</u>.
- Lawson, C.T., 2002. Survey Methods for Assessing Freight Industry Opinions. Salem.
- National Transport Development Policy Committee, 2014. India Transport Report, Vol. 1: Executive Summary. New Delhi
- Toilier, F., Serouge, M., Routhier, J.-L., Patier, D., Gardrat, M., 2016. How can urban goods movements be surveyed in a megacity? The case of the Paris region. Transp. Res. Procedia 12, 570–583. https://doi.org/10.1016/j.trpro.2016.02.012.

Thank You

KIE