

TRAVEL PATTERNS IN INDIAN DISTRICTS: DOES POPULATION SIZE MATTER?

Deepty Jain

Lecturer Department of Energy and Environment

TERI University Delhi Dr. Geetam Tiwari Professor Department of Civil Engineering IIT

CODATU 4th – 6th November 2017

Source: Lee and Gordon (2011), drive alone mode Study of 79 largest U.S. metro areas

Source: Song et al. (2017), Commuting travel time and population density, 35 cities of China

Urban form and Trave behaviour

- High Density is correlated with share of short distance trips (+)
- High density is correlated with NMT share (+)
- High mix land use intensity is correlated with less car use (-)
- High mix land use intensity is correlated with short distance trips (-)

Source: LSE cities 2014

Non-motorised transport — Public transport — Private motorised :

In India

- Only few examples of studies exists
 - MOUD Wilbur Smiths Report on 30 Indian cities
 - Exclusive studies for
 - Ahmedabad
 - Rajkot
 - Vishakhapatnam
 - Delhi
 - Mumbai
 - Agartala
 - No comprehensive comparison of travel behavior respect to socio-economic structure of cities
- Relevant travel behavior data collected by Cer of India (2011) is available at district level
 - Other workers
 - Only for work trips

Cities classification based on area weighted mean shape index; area weighted mean fractal dimension; compactness index; compactness index of the largest Patch and ratio of open space; Source: Huang et al. 2007

Research question and objectives

- Aim
 - To understand the variation in travel behavior across districts in India
- Objectives
 - Null Hypothesis 1: The trip length does not significantly varies by population in India
 - If in case 1, null hypothesis is rejected then;
 - Null Hypothesis 2: Trip length does not significantly varies with respect to the socio-economic structure of the cities

Methodology

Bi-variate correlation analysis

	Population density	Per- capita income	Index of economic activities	Contribution of secondary sector to district GDP	Contribution of tertiary sector to district GDP	percentage urban population
Population density	1					
Per-capita income		1				
Index of economic activities	.563	.215	1			
Contribution of secondary sector to district GDP		.287		1		
Contribution of tertiary sector to district GDP	.353	.271	.232	327	1	
Income < INR 12000 per month	307	514	361	262	227	594
Income between INR 12000 – 36000 per month	.329	.460	.331	.212	.278	.578
Income > INR 36000 per month	.257	.540	.375	.303	.158	.574
Percentage urban population	.445	.511	.330	.307	.464	1
Work participation rate	152	.178				

Model Summary

Algorithm	TwoStep
Inputs	1
Clusters	3

Cluster Quality

Two-step cluster classification for population

Model Summary

Algorithm	TwoStep
Inputs	7
Clusters	2

Cluster Quality

Two-step cluster classification for correlated variables

Cluster classifications – type 1 Based on population

		Statistics					
		Mean (in millions)	Std.	Minimum (in millions)	Maximum (in millions)		
Cluster No.	Valid cases		(in millions)				
Large	6	10.77	3.14	7.72	16.79		
Medium	119	3.86	0.88	2.80	7.21		
Small	234	1.71	0.58	0.24	2.77		
Totals	359						

, ,

y Cluster classifications – type 2 Based on socio-economic variables

Cluster Number of	Cluster	Ν	Mean	Std.	Minimum	Maximum
Case	classification			Deviation		
Tertiary sector	1	166	50%	8%	32%	73%
contribution	2	66	56%	11%	32%	91%
Per-capita income	1	166	19403	8263	6122	35066
(INR)	2	66	51399	14776	35713	95373
Index of economic	1	166	.078	.085	.008	.525
activities (2007)	2	66	.615	2.462	.020	19.811
Percentage of	1	166	24%	14%	5%	99%
population in urban	2	66	43%	19%	17%	100%
Population density	1	166	693	706	35	4608
(per hectare)	2	66	934	2418	48	19652
Percentage of	1	166	95%	27%	82%	99%
income < INR		66	88%	72%	59%	97%
12,000	2					
Percentage of	1	166	3%	2%	6%	11%
12000 = 36000	2	66	7%	4%	2%	22%

Correlation between socio-economic factors

	No travel	Trips between 0 - 1 km	Trips > 5 km
Cluster type 1(1 = large, 2 = medium and 3 = small)		0.258	-0.226
Cluster type 2 (1 = low economic, 2 = high economic)	-0.533		0.480
Contribution of secondary sector to district GDP	-0.341	-0.202	0.435
Percentage of total workers	-0.288	0.255	
Population density		-0.121	0.253

Dependent		Anova				
variables	R	Adjusted R	Root	df	F	Sig
	Square	Square	MSE	G		eig.
No travel share	0.451	0.436	0.069	6, 225	30.74	0.000
				6		

Regression analysis and results

Coefficients							
	No travel	Share of trips	Share of trips				
	share	TL < 1 km	TL > 5 km				
Secondary sector contribution	-0.322	-0.053	0.262				
Work participation rate	-0.353	0.134	0.045				
Population density	0	0	0.001				
Cluster type 1 (base= large)							
Medium	0.067	-0.012	-0.084				
Small	0.069	0.007	-0.114				
Cluster type 2 (base =2)							
1	0.087	0.001	-0.052				
Constant	0.444	0.119	0.317				

- No travel share is more in districts of small size, less urbanization rate, tertiary sector contribution to the district GDP and per capita income.
- Share of short trips does not varies significantly with population size, population density and economic performance of the districts.
- Share of long distance trips is likely to increase with population size, secondary sector contribution to the district GDP and work participation

Findings and Conclusions

- Travel behavior has been analysed for multiple districts in India
- Trip length frequency distribution can be significantly explained by –
 - economic, socio-economic and development related variables
- Increasing population size of Indian districts is resulting in increasing share of long distance trips.
- Small size districts are likely to have more mix land use intensity thereby explaining high share of no travel
- Share of Short distance trips cannot be explained by the population size of districts.
- Policy implications for sustainable transport policy
 - Adoption of appropriate development policies to discourage long distance trips in large size districts
 - High economic performance of districts is associated with long distance trips – need for appropriate PT infrastructure
 - Adoption of NMT and development policy to retain the existing share of short distance trips

Limitations and way forward

- Limitations
 - Dataset ranges between 2007 2010
 - Of the total 361 districts identified complete data is available for only 232 districts
- Future research
 - Need to explore the underlying pattern in modal share
 - The impact of number of employees by establishment type, transport infrastructure availability and vehicle ownership also need to be studied.

THANK YOU