

Ministry of Housing and Urban Affairs Government of India 16TH URBAN MOBILITY INDIA CONFERENCE CUM EXPO 2023 INTEGRATED & RESILIENT URBAN TRANSPORT 27TH TO 29TH OCTOBER 2023 MANEKSHAW CENTRE, DELHI

COLLABORATIVE GOVERNANCE IN URBAN TRANSPORT Research Symposium 1: Integrated & Resilient Urban Transport

Paper ID- 21

Exploring Connectivity of Indian Road Networks Patterns and its Classification using Deep Learning Technique

Authors: Almas Siddiqui, Veera Manikanda Prabhu and Ashish Verma Presented by: Miss Almas Siddiqui, Research Scholar, IST Lab, IISc Bangalore

Contents

Introduction
Literature Review
Aim and Objectives
Methodological Framework
Data Collection and Data Preparation
Objective 1
Objective 2
Objective 3
Summary and Future Scope

Introduction

Urban Forms

•Spatial Imprint of Transportation and Land-use

Technology •Machine Learning Techniques

URBANIZATION

Urban Expansion
Compact City
High-energy & unsustainable
consumption
patterns

Spatial Network Analysis •Transport Geography

•Study of Interaction Effects

Machine Learning

Techniques

Supervised and
Unsupervised learnings
Deep Learning
Techniques

Integrated Land-Use Transport

•Quantification of Transport Networks and urban growth

Transportation

•Transport Geography •Spatial Network Analysis

Literature Review

Asami et al., 2001

•Graphtheoretical and image-analysis based indices for characterization of network patterns

Eriksson et al. (2012)

2

Investigated the associations
 between three walkability
 parameters (residential density,
 street connectivity and LU mix)
 and physical activity

Deep Learning Technique

Chen et al., 2021 implemented a deep learning method by generating an image of the street network and classifying it using the ResNet-34 model.

Shi et al., 2013

•Discussed the type of **street network patterns** in urban core area in terms of density, spacing, and the types of street networks.

3

Wagai, J., 2016

•Obtained comparable street connectivity index scores

Daniel et al., 2020

Network topology determines the shape of a city.
A basis for identifying the network patterns.

6

Li et al., 2022

•Studied physical characteristics of the street network by considering **street length** within the **spatial cell** of the network G (100m x 100m).

Aim and Objectives

AIM- To quantify, visualize, and compare the road network connectivity of four Indian cities; and to check if unique index ranges can represent road network patterns

Determination of Connectivity Index Range for each road network pattern

Selected Indian Cities

Chandigarh

Bangalore

IISC Sustainable Transportation Lab (IST Lab)

Data Preparation

Sampling: Approximately
 120 for each class.

•

- Input Images: 764 images
 which was divided into 611
 training images and 153
 testing images based on the
 optimal train-test split ratio
 of 80:20.
- Clipping of images: Manual Classification=5500 images, PyQGIS tool=6561 images.
- Resnet 50 V2 model
 performs better than other
 variants in the Resnet model
 with 96.73% accuracy and
 a loss value of 0.1655

Objective 1 Different types of patterns and its distribution across cities

	Class distribution			
Class	Bengaluru	Chandigarh	Delhi	Lucknow
Tree & Cul-de-sacs	27.69	28.41	25.84	19.50
Grid Iron	10.74	9.09	24.69	25.03
Irregular blocks	18.29	38.64	17.36	22.13
No pattern	17.87	8.52	11.28	0.82
Tree & Irregular blocks	22.52	2.84	10.27	23.30
Ring & Radial	2.89	12.50	10.56	9.22

Objective 1- Road Network Classifier Maps

LEGENDS Classifier map of Chandigarh (96% Accuracy) Tree and Branches with Cul-de-sacs Grid Iron Irregular Blocks No Pattern (Irregular) Tree and Branches with Irregular Blocks Ring and Radial

Basemap: Open Street Map

- Node density: The number of nodes within a grid Beta: $\frac{e}{v}$ cell Gamma
- Intersection density: The number of intersections within a grid cell
- **Dead-end density:** The number of dead-ends within a grid cell
- Edge density: The number of edges within a grid cell
- Network density: The sum of the length of the routes considered within a grid cell.

- Gamma: $\frac{e}{3(v-2)}$
- Connected Node Ratio (CNR): <u>Total number of intersections</u>
 - Total number of nodes
- CNR index considers the effect of intersections and dead ends within a grid cell.

Objective 2- Range of alpha and beta index value for different patterns

S. No.	First level	Second level	Third level
1	CULDESAC	-	CULDESAC-IRREGULAR-DISCONNECTED
2	GRID	-	GRID-IRREGULAR-CULDESAC
3			GRID-IRREGULAR-DISCONNECTED

S. No.	Third level	Ranges of alpha	Ranges of beta
1	CULDESAC-IRREGULAR- DISCONNECTED	0.13-0.27	1.25-1.43
2	GRID-IRREGULAR- CULDESAC	0.24-0.307	1.48-1.72
3	GRID-IRREGULAR- DISCONNECTED	0.18-0.32	1.36-1.62

Objective 3- Composite Indexing using Graph-

theoretical Indices and GCAR

Index: Grid Coverage Area Ratio (GCAR)

It measures coverage of the network in percentage.

S.	Range of Area GCAR	
No.	Coverage (Ac)	
1	0 < Ac < 25%	0.25
2	$25 \le Ac < 50\%$	0.375
3	$50 \le Ac < 100\%$	0.75
4	Ac = 100%	1

Grid with 100% coverage

Grid with 75% coverage

Equal number of nodes and edges

- In both grid images: v = 9; e = 12
- Beta: $\frac{e}{v} = \frac{12}{9} = 1.33$ (Before inclusion of GCAR)
- GCAR100% = 1 ; GCAR75% = 0.75
- Beta 100 % = 1.33; Beta 75 % = 0.75*1.33=1

L	Class	Name
E	0	Tree & Cul-de-sacs
G	1	Grid Iron
E	2	Irregular blocks
Ν	3	No pattern
D	4	Tree & Irregular blocks
S	5	Ring & Radial

Summary and Future Scope

SUMMARY

- **Resnet50 V2 Classifier** model classified the road patterns in Indian cities with an accuracy of 97%.
- A **unique index range** can't be found with only by using nodes and edges i.e. just grapgtheoretical indices.

FUTURE SCOPE

- Effects of **urban growth indices** on the connectivity of road network can be studied.
- Combined effect of land use characteristics, traveller characteristics, travel pattern, route characteristics and mode choice can be studied to understand the spatial interaction between urban and transportation planning in a better way.

Your best quote that reflects your approach... "It's one small step for man, one giant leap for mankind."

- Neil Armstrong