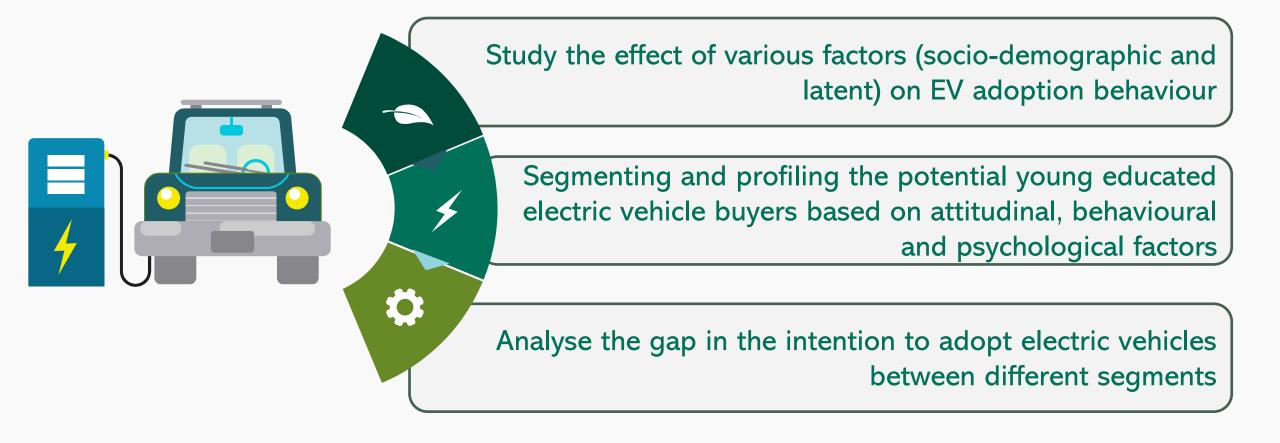


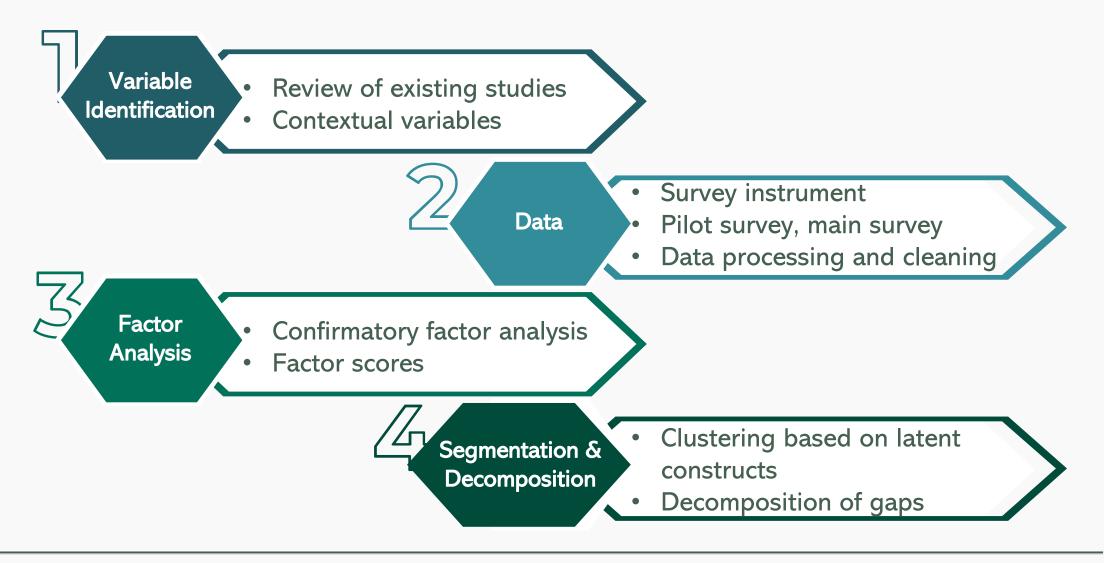
Intention to Adopt Electric Vehicles Among Early Adopters in a Developing Economy: An Oaxaca-Blinder Decomposition Approach

Authors: Furqan A. Bhat, Ashish Verma

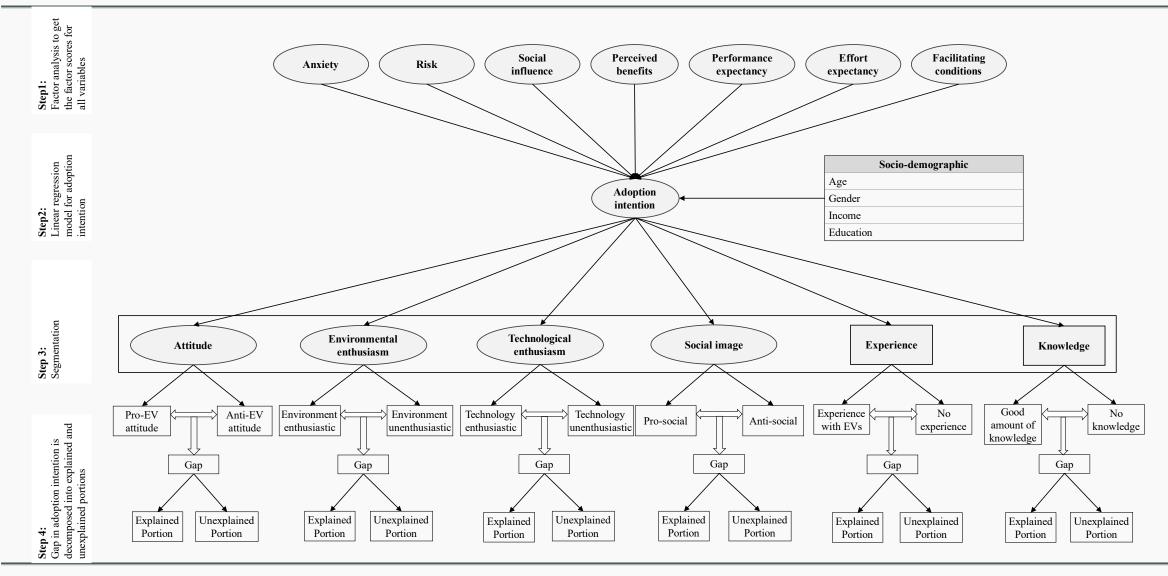
Furqan A. Bhat, PhD Scholar, Indian Institute of Science (IISc), Bangalore, India


Outline

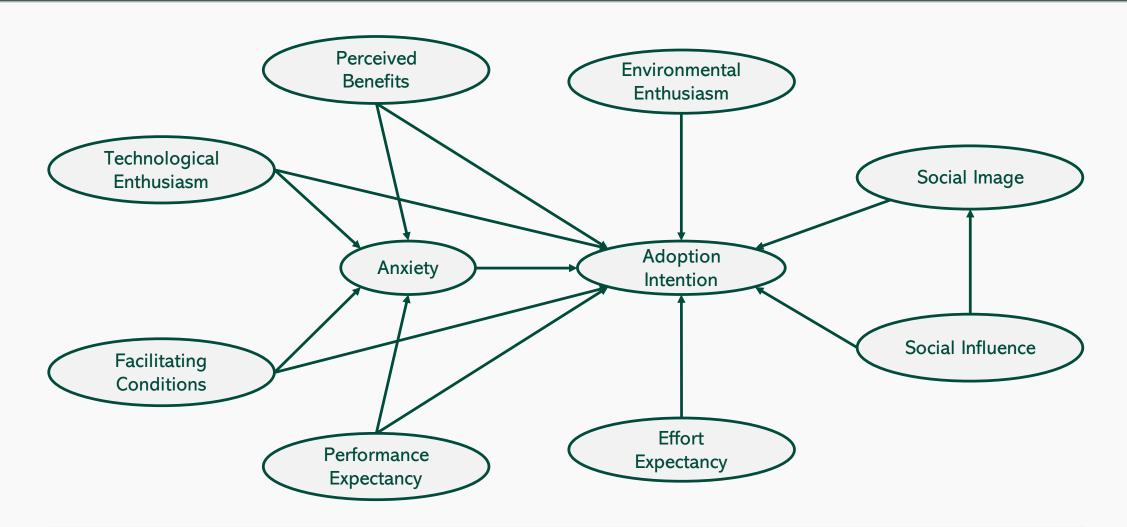
- Study context
- Objectives
- Methodology
- Variables and data
- Data analysis and results
- Conclusions, limitations and future scope



- India is characterised by a median age of little more than 28 years
- India has the world's largest millennial population standing at around 440 million, which makes up approximately one-third of the country's population
- Two-thirds of the country's people are between the ages of 20 and 35 years
- Younger people have been found to be more open to the early adoption of innovations and sustainable technologies such as electric vehicles because of their technological enthusiasm and environmental concerns (Sovacool et al., 2018).
- Indian-educated youngsters have also been found to have a higher propensity toward purchasing a vehicle (Verma et al., 2017)

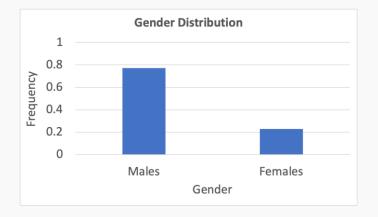

Objectives

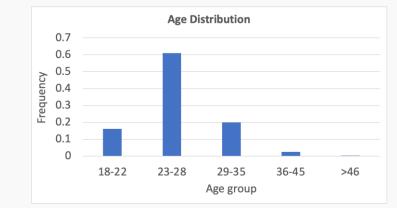
Methodology

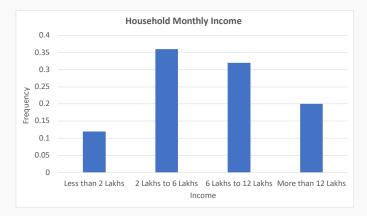


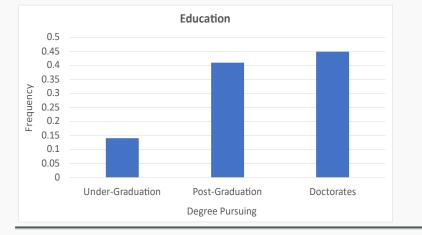
Methodology

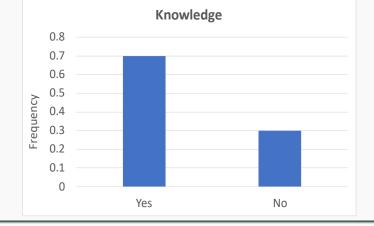
Constructs	Items	Codes
Environmental	I think we need to address environmental problems	EnvEnth1
– Enthusiasm	I think we owe it to our future generations to provide them with a quality environment	EnvEnth2
	I feel bad about the degrading environment	EnvEnth3
	I am willing to pay extra money for things to protect the environment	EnvEnth4
Technological	I get excited about a new product in the market	TechEnth1
Enthusiasm	I like to buy new products early after their launch	TechEnth2
Anxiety (Perceived risk)	I would not be able to charge the vehicle at home	Anx1
	There are not enough charging stations in and around the places I travel to	Anx2
	Electric vehicles take too long to charge	Anx3
Social Image	Driving an EV would make people perceive me as a person who cares about the environment	SocIma1
	Driving an EV would make me feel like a responsible citizen of the society	SocIma2
	It will give me a feeling of satisfaction to drive an EV	SocIma3
Social Influence	I will buy an EV if I read good reviews about them	SocInf1
	I will buy an EV if my friends recommend me to buy	SocInf2
	I will buy an EV if my relatives recommend me to buy	SocInf3
Perceived Benefits	Driving an EV reduces the carbon footprint	PerBen 1
	Driving an EV reduces our dependence on fossils	PerBen2

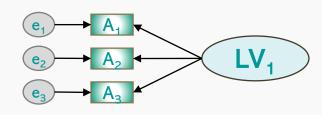

Variables

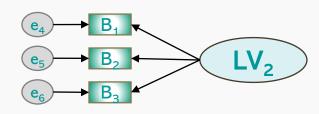


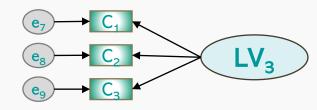

Source: Bhat, F.A., Verma, M. & Verma, A. Measuring and Modelling Electric Vehicle Adoption of Indian Consumers. Transp. in Dev. Econ. 8, 6 (2022)

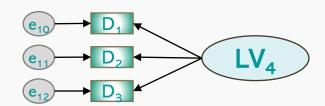

Data Description


- Sample data collected from the students at Indian Institute of Science, Bengaluru
- Simple random sampling method followed by snowball sampling
- A total of 656 valid responses were obtained from February to April 2021

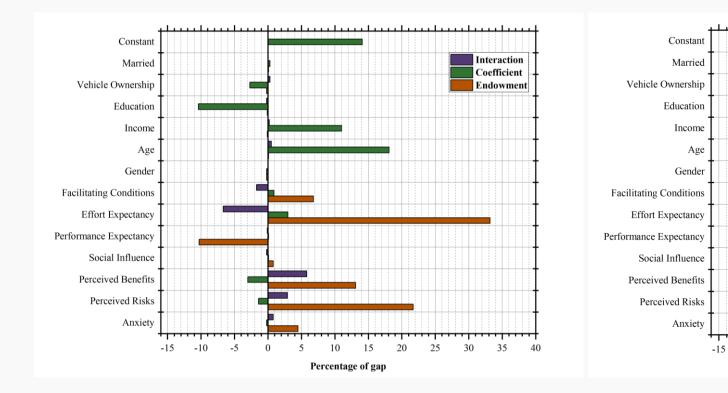








Factor analysis


Construct	ltems	Loadings	Composite Reliability	Cronbach's alpha	AVE
	EnvEnth1	0.832		0.848	0.593
- Environmental	EnvEnth2	0.816	0.796		
Enthusiasm	EnvEnth3	0.710			
	EnvEnth4	0.714			
Technological	TechEnth1	0.899	0.759	0 700	0.592
Enthusiasm	TechEnth2	0.612	0.733	0.709	
	Anx1	0.714	0.712	0.766	0.547
Anxiety	Anx2	0.883			
	Anx3	0.593			
	SocIma1	0.787	0.815	0.824	0.652
Social Image	SocIma2	0.756			
	SocIma3	0.876			
Social	SocInf1	0.540		0.805	0.681
Influence	SocInf2	0.964	0.841		
innuence	SocInf3	0.907			
Perceived	PerBen1	0.929	0.765	0.835	0.739
Benefits	PerBen2	0.783	0.700		
Attitude	Att 1	0.763		0.881	0.657
	Att2	0.783	0.841		
	Att3	0.838			0.007
	Att4	0.855			
CFI = 0.990	TLI = 0.998 RMSEA =		SEA = 0.046	SRMR = 0.0	50

Construct	Group	N	Mean	f-value	Mean difference	p-value
Attitude	Pro-EV attitude	278	0.508	493.2	0.93	< 0.001
	Anti-EV attitude	348	-0.422			
Environmental enthusiasm	Pro-environment	313	0.338	207.4	0.69	< 0.001
	Anti-environment	313	-0.356			
Technological enthusiasm	Pro-technology	301	0.257	97.55	0.512	< 0.001
	Anti- technology	326	-0.255			
Social Image	Pro-social	372	0.300	253.6	0.762	< 0.001
	Anti- social	254	-0.462			
Knowledge	Good knowledge	188	0.279	49.6	0.412	< 0.001
	No knowledge	438	-0.133			
Experience	Experience	435	0.033	5.3	0.139	0.022
	No experience	191	-0.106			

Construct	Group	Mean	Gap	Endowment	Coefficient	Interaction
Attitude	Pro EV attitude	0.508	0.930	0.642	0.274	0.014
	Anti EV attitude	0.422	(100%)	(69.1%)	(29.4%)	(1.5%)
Environmental	Pro-environmental	0.338	0.695	0.412	0.258	0.024
enthusiasm	Anti- environmental	-0.357	(100%)	(59.3%)	(37.2%)	(3.5%)
Technological	Pro-technology	0.257	0.512	0.247	0.291	-0.025
enthusiasm	Anti-technology	-0.255	(100%)	(48.2%)	(56.9%)	(-4.9%)
Social Image	Pro-social	0.300	0.762	0.384	0.317	-0.061
	Anti- social	-0.462	(100%)	(50.4%)	(41.6%)	(-8%)
Knowledge	Knowledge	0.279	0.412	0.282	0.138	-0.008
	No knowledge	-0.133	(100%)	(68.4%)	(33.5%)	(-1.9%)
Experience	Experience	0.033	0.139	0.067	0.069	0.003
	No experience	-0.106	(100%)	(48.2%)	(49.6%)	(2.2%)

Results

Decomposition of gap

Contribution to the endowment, coefficient, and interaction portion in mean <u>attitude</u> towards electric vehicles

Contribution to the endowment, coefficient, and interaction portion in mean <u>environmental enthusiasm</u> towards electric vehicles

5

10

Percentage of gap

15

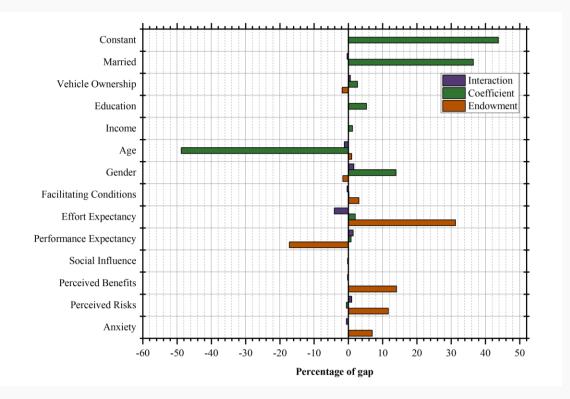
20

25

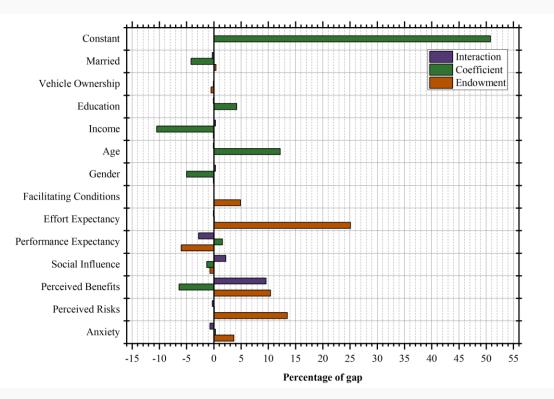
30

-10

-5


0

Interaction


Coefficient

Endowment

Decomposition of gap

Contribution to the endowment, coefficient, and interaction portion in mean <u>technological enthusiasm</u> towards electric vehicles

Contribution to the endowment, coefficient, and interaction portion in mean <u>social image</u> towards electric vehicles

Decomposition of gap

Constant

Married

Education

Income

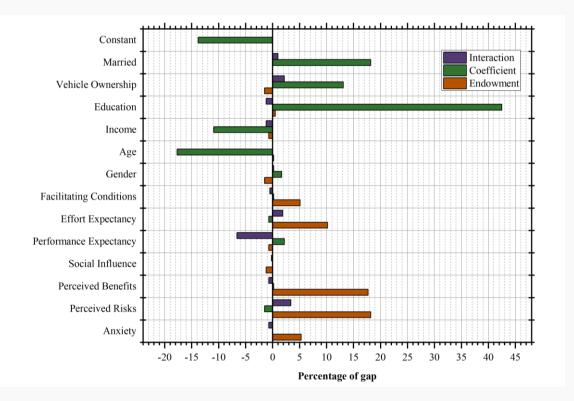
Gender

Age

Vehicle Ownership

Facilitating Conditions

Performance Expectancy


Effort Expectancy

Social Influence

Perceived Risks

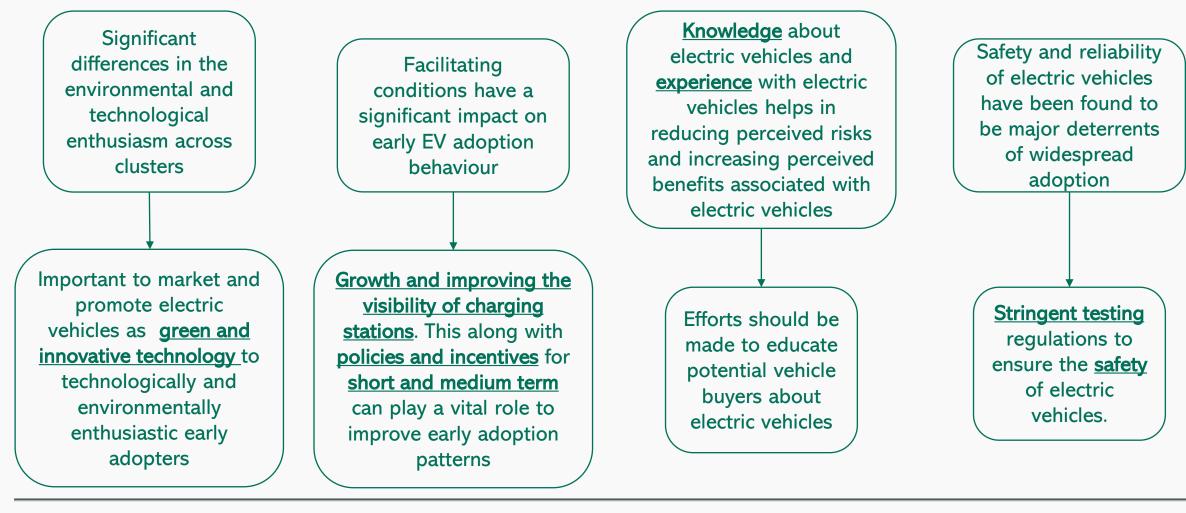
Anxiety

Perceived Benefits

Contribution to the endowment, coefficient, and interaction portion in mean <u>knowledge</u> towards electric vehicles

Contribution to the endowment, coefficient, and interaction portion in mean <u>experience</u> towards electric vehicles

-150 -125 -100 -75 -50 -25 0 25 50 75 100 125 150 175


Percentage of gap

Interaction

Coefficient

Endowment

Findings and implications

Policy implications

- Marketing campaigns should be designed to highlight the <u>green and innovative image</u> of electric vehicles. This will cater technologically and environmentally enthusiastic early adopters.
- <u>Growth</u> and improving the <u>visibility</u> of <u>public charging stations</u> will help in inducing electric vehicle adoption.
- Policies to reduce the initial purchase cost can help improve the uptake of electric vehicles. These can be <u>subsidies and incentives</u> in the short-term and better business models such as <u>subscription-based</u> <u>battery services</u> in the long run.
- <u>Stringent testing</u> regulations to ensure the <u>safety</u> of electric vehicles.
- Electric vehicles in the Indian market can be customised with some <u>female-friendly features</u> such as automatic transmission, assisted navigation, and rear parking cameras to make electric vehicles more lucrative to females.
- <u>Knowledge</u> about electric vehicles and <u>experience</u> with electric vehicles helps in reducing perceived risks and increasing perceived benefits associated with electric vehicles. Hence, efforts should be made to educate potential vehicle buyers about electric vehicles.

Conclusions

- The study demonstrates the usefulness of different psychographic factors in segmenting potential electric vehicle buyers into different segments.
- By investigating these features, the respondents were segmented into three clusters, namely innovation adoption leads, innovation adoption indifferents and innovation adoptions idlers.
- The first segment of idlers is found to display particularly disapproving opinions regarding all the latent variables, with cluster means for all the latent factors being negative and lower than the mean values.
- On the contrary, the cluster means for all clustering variables in the case of leads is observed to be positive and higher than the mean values, implicating a positive perception of these variables among this group.
- It is very important for strategists and planners to target and capture this cluster of technology leaders as this can help in the widespread adoption of electric vehicles in the near future.

Thank you for listening

<u>furqanbhat@iisc.ac.in</u> <u>furqanbhatofficial@gmail.com</u>