

GOVERNMENT OF INDIA MINISTRY OF HOUSING AND URBAN AFFAIRS

Vehicular Emission Modelling at Toll Plazas under Mixed Traffic Conditions

Authors

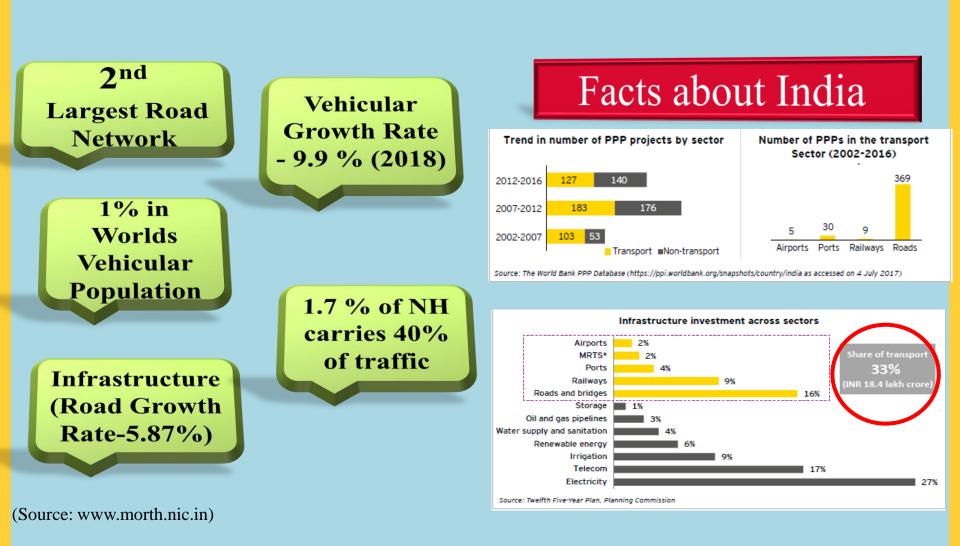
Mr. Chintaman S. Bari

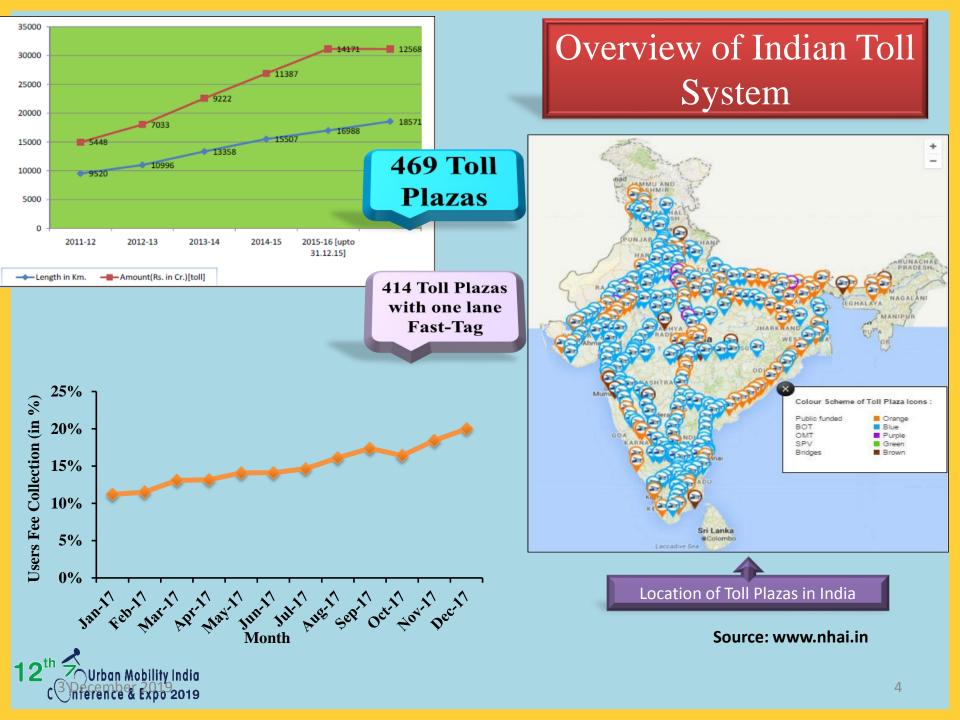
Research Scholar, Dept. of Civil Engineering SVNIT, Surat, Gujarat 395007 (India)

Dr. Yogeshwar V. Navandar

Assistant Professor, Civil Engineering Department, MIT Academy of Engineering, Pune -412 105 (India)

Dr. Ashish Dhamaniya, Associate Professor, Dept. of Civil Engineering SVNIT, Surat, Gujarat 395007 (India)





Brief Outline

Residents may move court to get Kherki Daula toll shifted

Say Dust & Air Pollution Pose Serious Risks To Health

Ipsita.Pati@timesgroup.com

Gurgaon: After three years of the government dragging its feet on the Kherki Daula toll plaza shift, residents of new sectors along the Dwarka Expressway have decided to move high court.

"We have been holding protests seeking its removal since 2016. Yet, we continue to suffer. Now, we will take the matter to the Punjab and Haryana high court," said Satish Yaday, a member of Toll Hatao Samiti, at a press conference. The toll plaza is a major

choke point on the Delhi-Gurgaon Expressway. The traffic congestion aside, emissions from vehicles that wait in long lines affect air quality, residents claim. Besides, uneven roads in the vicinity are almost always dusty. All of this, residents of areas along the Dwarka Expressway have been saying, has turned into a persistent health hazard.

f

e

h

"Children and old people are suffering because of the air pollution," Yadav added.

RTI, seeking informati What would also help, resithe collection of funds at t dents said, is completion of the Dwarka Expressway stretch from National Highway-8 to the airport, easing some of the congestion. Last year, the toll oper-

ator — Millennium City Expressway Private Limited (MCPEL) - had opposed the proposal to move the toll plaza on the grounds that it would suffer massive revenue losses. "We had filed an

ed revenue of Rsc sponse to th

Vet

one on the Consider States Parkersey. A toil collingue extends to 1,000 to 1,000 drivers a de-Emission ies arise, 'there is n do what we do.

Estimation under Mixed Traffic Conditions

E			
L	IT'S ET	/EN	
Ι.		102	
ľ	DAIL	1	
	"at \$400-630 Pt	OD tor on	11010
	When Mature 32	and the	in the second

Challenges and Charms of a Toll Collector's Life

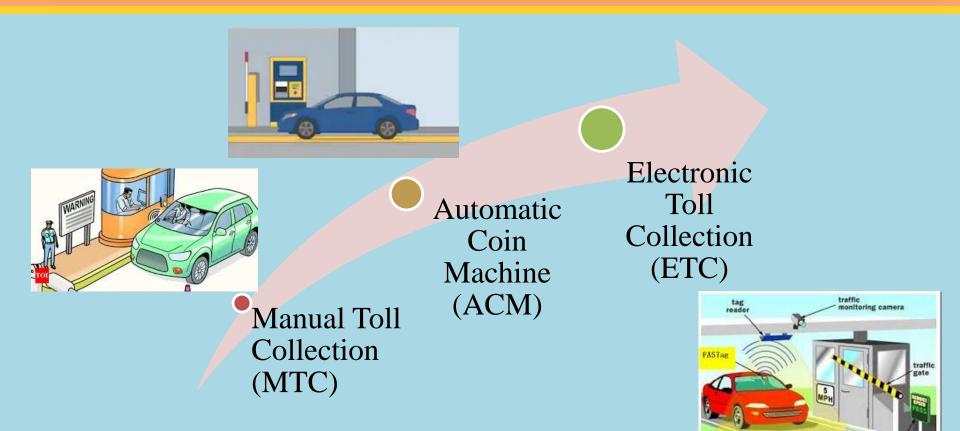
Cardini presents an

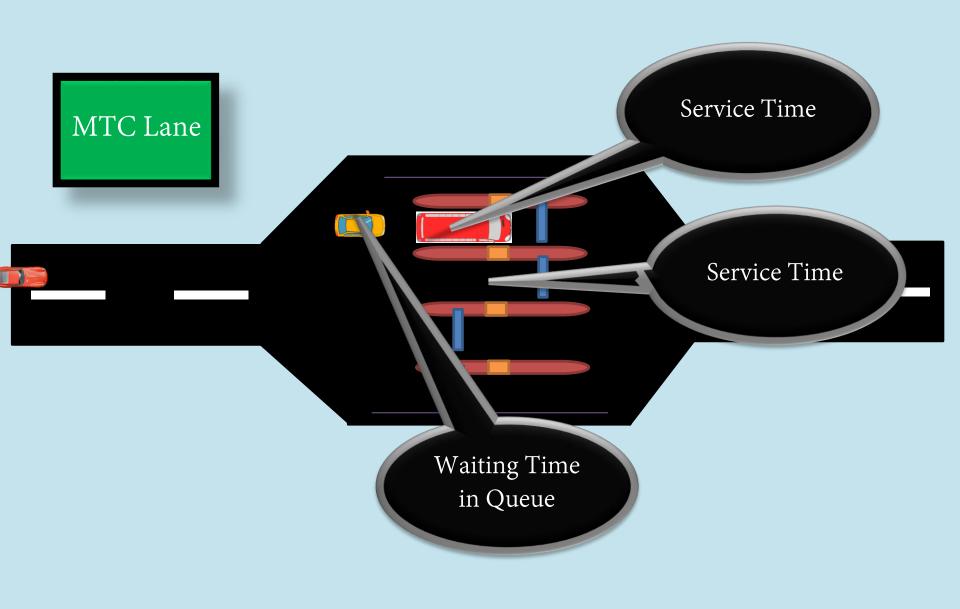
1011-121-1-001

THE R. LEWIS CO., LANSING, MICH.

Se Rt. 31 & Molar

Need of the Study


Toll Road Classification


Methods of Toll Collection

3 December 2019

8

Literature review on emissions

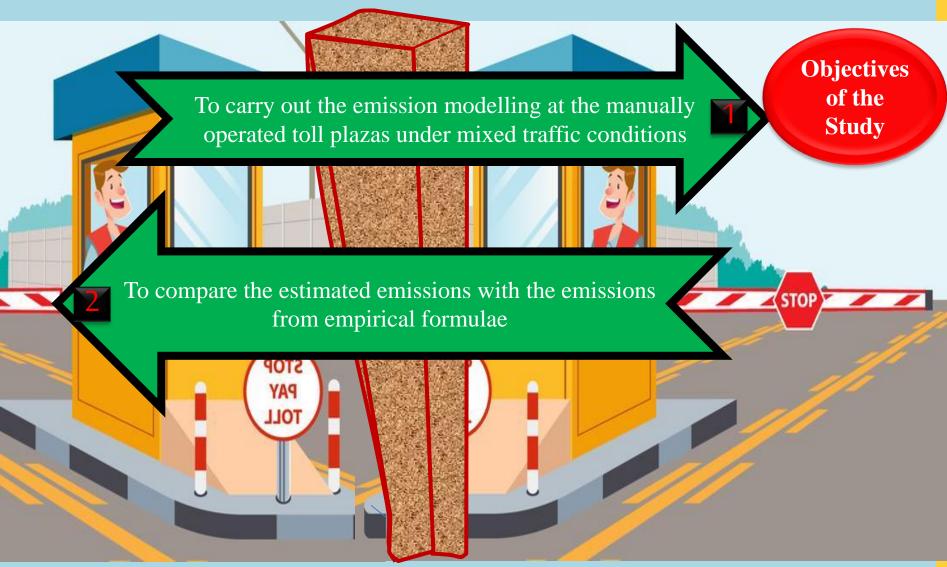
01

Literature review on zone of influence

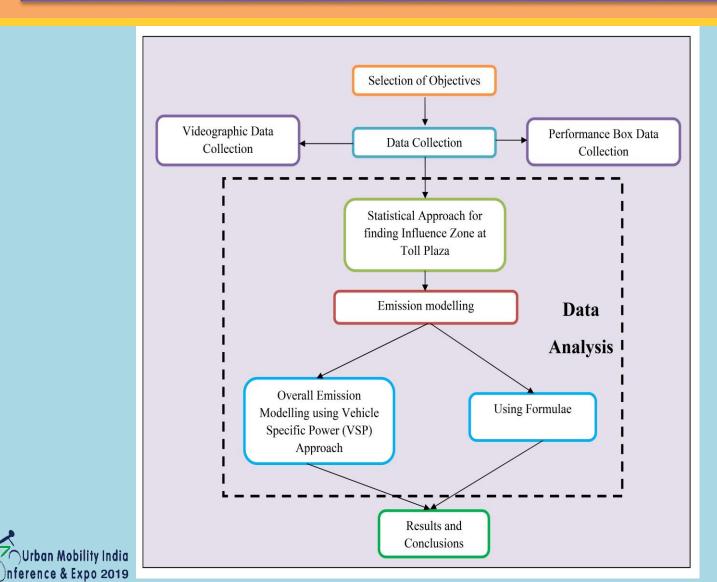
Reported Zone of Influence by Different Researchers

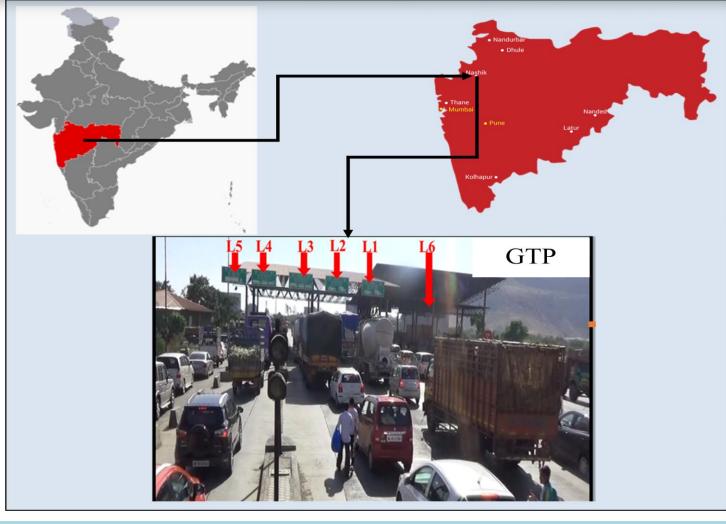
Researcher	Facility	Country	Zone of Influence (ZOI)		
Saka et al. (2001)	Toll Plaza (ETC)	United States of America (USA)	610 m		
Mousa (2002)	Signalized Intersection	Oman	330 m		
Venigalla and Krimmer (2006)	Toll Plaza (ETC)	New York	610 m		
El-Shawarby et al. (2007)	Signalized intersection (deceleration)	Virginia	93.1 m		
Song et al. (2008)	Toll Plaza (MTC and ETC)	China	400 m		
Song et al. (2010)	Acceleration lane	China	518 m		
Song et al. (2010) Deceleration lane		China	288 m		
Weng et al. (2015)	Weng et al. (2015) Toll Plaza (ETC)		240 m		
Weng et al. (2015)	Weng et al. (2015) Toll Plaza (MTC)		300 m		
Yang et al. (2016)	Yang et al. (2016) Ramps		152 m		
Bokare and Maurya (2017)	Signalized intersection	India	837 m		
Chung et al. (2017)	Toll Plaza (MTC and ETC)	Korea	870 m		

02

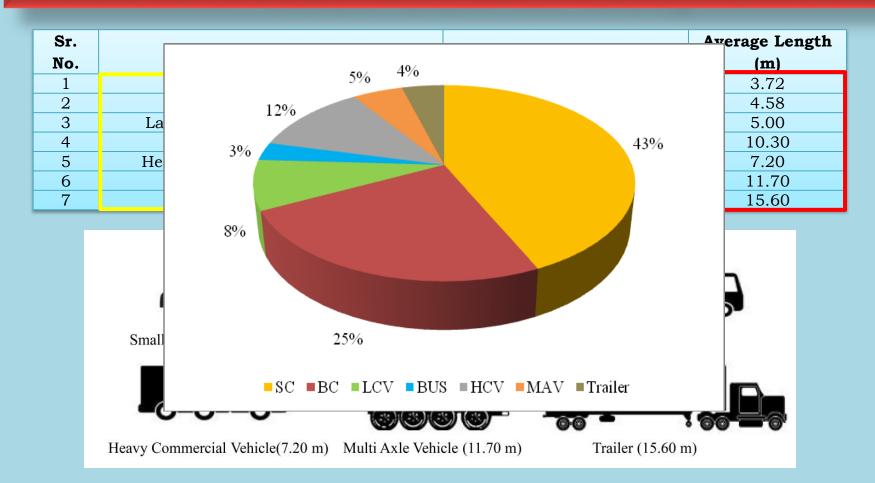

Literature review on Emission

Researcher	Country	Method	Facility	
Saka et al. (2001)	Baltimore Metropolitan area	MOBILE 5b and Simulation	ETC, MTC lane	
Feng and Cheng (2002)	Chongqing	Mobile5	Urban Freeway	
Ahn et al. (2002)	Ahn et al. (2002) Oak Ridge National Laboratory (ORNL		Freeway	
Rakha and Ding (2003)	Phoenix	Floating car Method and PEMS	Freeway	
Coelho et al. (2005)	Portugal	Microwave Doppler sensor	ETC, MTC lane	
Venigalla and Krimmer (2006)	New York	Speed Profile Discretization (SPD)	ETC, MTC lane	
Nesamani and Subramanian (2006)	India	International Vehicle Emission (IVE)	Urban road	
Song et al. (2012)	China	Floating car Method and PEMS	Freeway	


Reported Methods of Emission Estimation



Methodology of the present study

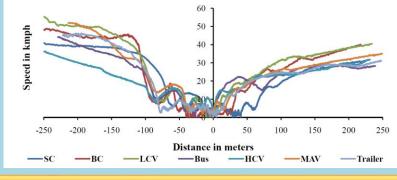

2th

Data Collection

12th Urban Mobility India C nference & Expo 2019

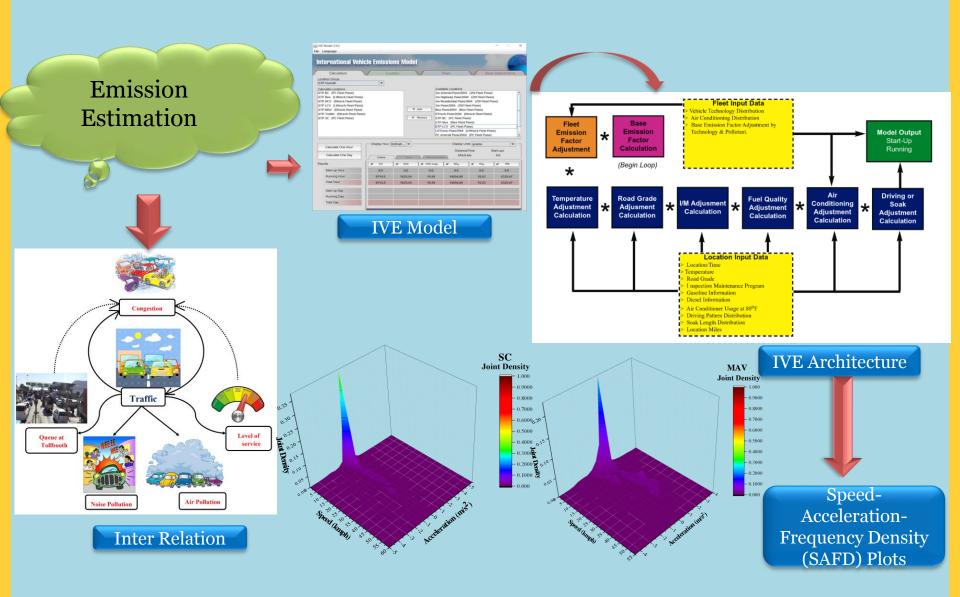
Vehicle Class for Study

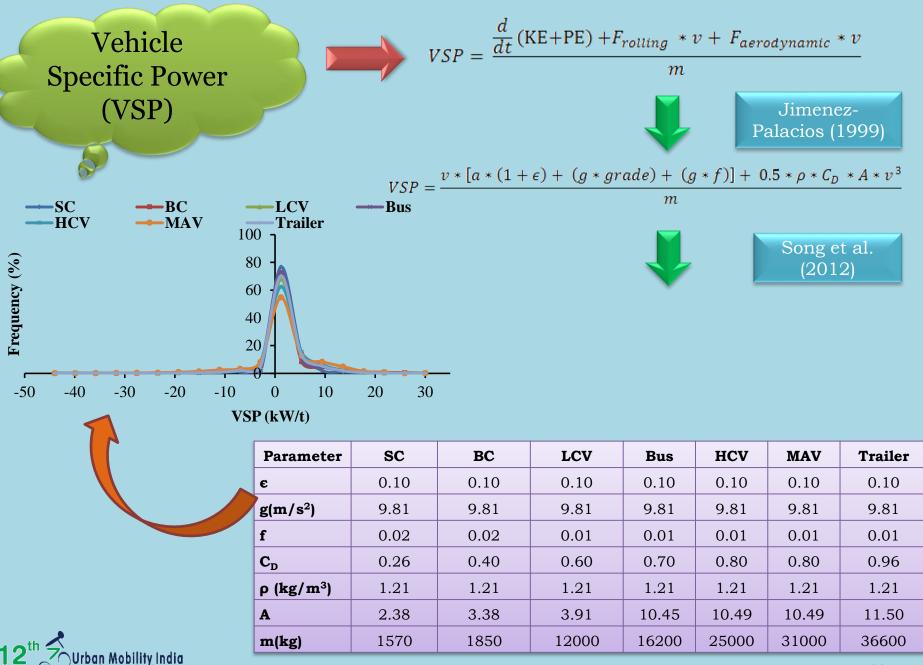
Performance Box Analysis


Field Data

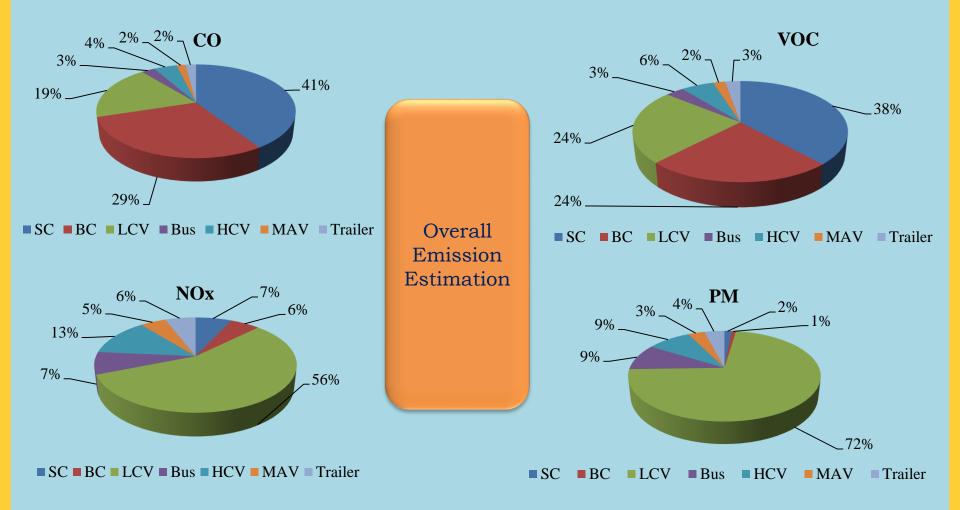
Collection

P-Box

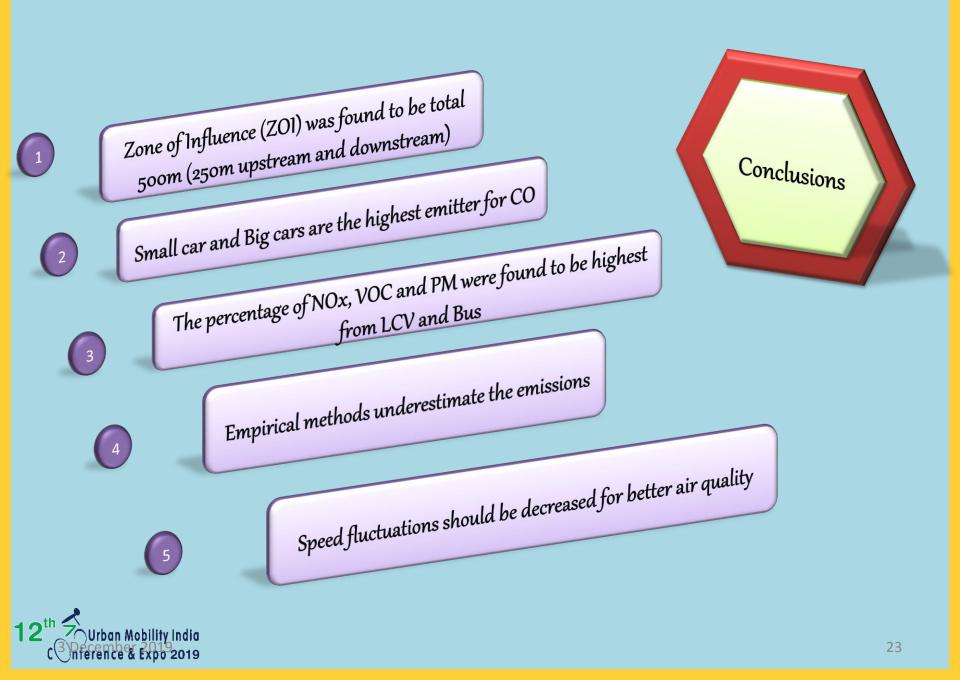

Extracted P-Box Data for Speed-Distance


Descriptive Statistics for Zone of Influence (ZOI)

Vehicl	SC	BC	LCV	Bus	HCV	MAV	Trailer	
Number of observation		35	31	35	30	32	32	30
	Minimum	60.00	50.00	100.00	40.00	100.00	40.00	143.80
Distance	Maximum	160.00	240.00	206.50	220.00	208.00	180.00	200.00
before toll	Average	90.00	130.00	167.00	175.00	161.80	143.20	175.40
plaza	Standard		26.70	21 69	57.66	31.58	37.06	19.75
	Deviation	28.90	20.70	31.68	57.00	31.38	37.00	19.75
	Minimum	60.00	60.00	40.00	120.00	120.00	60.00	100.00
Distance	Maximum	140	180	240	230	240	240	240
after toll	Average	85	126	185	206	212	192	195
plaza	Standard	33.60	55.00	52.00	35.00	32.60	51.50	47.70
	Deviation	55.00	-35.00	52.00	35.00	52.00	51.50	47.70



C) nference & Expo 2019



Emission by Formulae

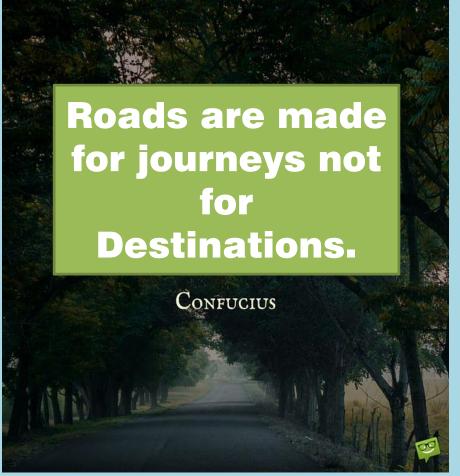
• $E_i = \sum E_{ik}$ • $E_{ik} = \frac{\sum EF_{ij} * V_i * L}{106}$				(He and Zhong, 2014)					
	* 7	106							
Vehicle Category	V _i	L (km)	PM	EF _{ij} CO	VOC	PM	_{ij} kg/day CO	VOC	
SC/BC	1000	0.5	0.055	4.564	1.183	0.028	2.282	0.592	
LCV	120	0.5	0.168	0.870	0.357	0.010	0.052	0.021	
Bus	44	0.5	0.694	5.139	1.965	0.015	0.113	0.043	
HCV/MAV/ Trailer	310	0.5	1.268	12.028	1.589	0.197	1.864	0.246	
					Calculated	0.249	4.312	0.903	
					IVE	1.826	11.964	2.163	
					Ratio	7.318	2.775	2.396	
oth 🖍									

Urban Mobility India

Recommendations

- The major contributor of NOx, VOC and PM was Bus and LCV, thus making strict measures of dedicated lanes for LCV and Bus will decrease idling cycle and thus helps to decrease the emission level.
- Use of high speed transaction methods such as FasTag will help to decrease emissions.

References


- Ahn, K., Rakha, H., Trani, A., Aerde, M. Van, 2002. Estimating Vehicle Fuel Consumption and Emissions based on Instantaneous Speed and Acceleration Levels. J. Transp. Eng. ASCE 128, 182–190.
- Annual Report, 2018. Ministry of Road Transport and Highways (MoRTH).
- Boriboonsomsin, K., Uddin, W., 2006. Simplified Methodology to Estimate Emissions from Mobile Sources for Ambient Air Quality Assessment. J. Transp. Eng. 132, 817–828.
- Coelho, M.C., Farias, T.L., Rouphail, N.M., 2005. Measuring and Modeling Emission Effects for Toll Facilities. Transp. Res. Rec. J. Transp. Res. Board 1941, 136–144.
- CPCB, 2010. Status of the Vehicular Pollution Control Programme in India. Delhi. https://doi.org/10.1145/153571.214817
- Data Team, T.H., 2019. Most polluted cities in India mapped. The Hindu 2–5.
- Gao, Y., Yu, L., Guohua, S., Xu, Y., Hao, Y., 2010. Development and Application of Dynamic Vehicle Emission Model for Urban Road Networks, in: ICCTP 2010: Integrated Transportation Systems— Green, Intelligent, Reliable, ASCE. pp. 2779–2788.
- He, J., Zhong, P., 2014. Estimation of Air Pollutant Emission from Vehicles in Beijing-Harbin Highway. CICTP 2014 Safe, Smart, Sustain. Multimodal Transp. Syst. © ASCE 2014 2788–2797.
- Hui, G., Qing-yu, Z., Yao, S., Da-hui, W., 2007. Evaluation of the International Vehicle Emission (IVE) model with on-road remote sensing measurements. J. Environ. Sci. 19, 818–826.
- IANS, 2014. Electronic toll collection to enable fuel savings worth Rs 86,000 crore: Gadkari. The Hindu.
- Indo-HCM, 2017. Indian Highway Capacity Manual (Indo-HCM), CSIR-Central Road Research Institute, New Delhi. New Delhi.
- IVE, 2008. Users Manual Version 2.0.
- Jimenez-Palacios, J.L., 1999. Understanding and Quantifying Motor Vehicle Emissions with Vehicle Specific Power and TILDAS Remote Sensing.
- Liu, H., Wei, H., Yao, Z., 2014. Validating MOVES PM2.5 Emission Factor Empirically by Considering Accumulative Emission Effect. CICTP 2014 Safe, Smart, Sustain. Multimodal Transp. Syst. © ASCE 2014 3017–3028.
- MoRT&H, 2000. The Gazette of India: Extraordinary Part II-Sec.3. New Delhi. 3 December 2019

References

- Navandar, Y. V., Dhamaniya, A., Patel, D.A., Chandra, S., 2019. Traffic Flow Analysis at Manual Tollbooth Operation under Mixed Traffic Conditions. J. Transp. Eng. Part A Syst. ASCE 145, 1–17. https://doi.org/10.1061/JTEPBS.0000247
- Nesamani, K.S., Subramanian, K.P., 2006. Impact of Real-World Driving Characteristics on Vehicular. JSME Int. J. 49, 19–26.
- Perugu, H., 2018. Emission modelling of light-duty vehicles in India using the revamped VSP-based MOVES model : The case study of Hyderabad. Transp. Res. Part D 1, 0–1. https://doi.org/10.1016/j.trd.2018.01.031
- Racelogic Limited, 2014. Performance Box-III 100Hz GPS Data Logger User Guide.
- Report, N.S., 2011. Air quality monitoring, emission inventory and source apportionment study for Indian cities.
- Sehgal, M., Suresh, R., Sharma, V.P., Gautam, S.K., 2015. Assessment of outdoor workers' exposure to air pollution in Delhi (India). Int. J. Environ. Stud. 72, 99–116. https://doi.org/10.1080/00207233.2014.965937
- Song, G., Yu, L., Tu, Z., 2012. Distribution Characteristics of Vehicle-Specific Power on Urban Restricted-Access Roadways. J. Transp. Eng. 138, 202–209. https://doi.org/10.1061/(ASCE)TE
- Song, G., Yu, L., Zhang, X., 2008. Emission Analysis at Toll Station Area in Beijing with Portable Emission Measurement System. Transp. Res. Rec. J. Transp. Res. Board, No. 2058, TRB, Natl. Res. Counc. Washington, D.C. 106–114. https://doi.org/10.3141/2058-13
- Special-Corresspondant, 2019. 139 polluted cities not on clean air plan: report [WWW Document]. The Hindu. URL es-not-on-clean-air-plan-report/article26122626.ece (accessed 2.26.19).
- TERI, 2015. Air Pollution and Health, The Energy and Resources Institute. New Delhi.
- Toolbox, E., 2008. Rolling friction and rolling resistance [WWW Document]. Eng. Toolbox. https://doi.org/https://www.engineeringtoolbox.com/rolling-friction-resistance-d_1303.html
- Yan, Y., Ye, Z., Wang, C., Zhu, J., 2017. Vehicle Emission Comparisons along Electronic and Manual Toll Collection Lanes. CICTP 2017 3042–3058.
- Zhang, K., Yao, L., Li, G., 2013. Factors Affecting Vehicular Emissions and Emission Model, in: ICTE © ASCE. pp. 2848–2853.
- Zhao, Q., Yu, L., Song, G.-H., 2015. Characteristics of VSP distributions of light-duty and heavyduty vehicles on freeway. J. Transp. Syst. Eng. Inf. Technol. 15, 196–203.

