Comprehensive framework for adoption of Electric Vehicles: A Case study of Jaipur city

> Author - Mahima Soni & Prof. Dr. Sanjay Gupta School of Planning and Architecture, New Delhi

> > Presenter - Mahima Soni School of Planning and Architecture, New Delhi

Research Context & Need

Context

Rapid urbanisation & Transport Demand

Since 1980, India's transport demand has grown by 8 times, with 2 times increase in population.¹

Air Pollution

In 2019, India was the 5^{th} most polluted countries in the world (21 out of 30 most polluted cities are of India).²

Dependance on Oil Imports

In 2019, 12% of overall crude oil & 64% of natural gas demand was met from domestic production and balance was met through imports.²

Environment & Climate Change

In 2019, India's transportation sector contributes 10% of total national GHG emissions & road transport alone contributes to 87% of total emissions in the sector.³

Source:

- 1. Report on Transforming India's Mobility: A Perspective, NITI Ayog, 2018
- 2. Report on Status quo analysis of various segments of E-mobility, NITI Ayog, 2017
- 3. A Multi-Model Assessment of Energy and Emissions for India's Transportation Sector through 2050, CEEW, 2018

Need for paradigm shift in automobile sector

Indian govt. envisages **E-mobility** as a viable alternative to address these challenges

Need

- EV adoption in India has failed to achieve the desired growth rate due lack of well defined EV Ecosystem.¹
- Presence of **limited literature on EV** Adoption Intention & Behavior modelling in India.
- Antecedent literature focuses on **technical & infrastructure issues** in EV adoption rather than **behavioral factors**.²
- Absence of research taking into account needs of all the stakeholders involved for EV adoption.
- A **Toolkit/ Comprehensive framework** for developing an efficient EV Ecosystem is missing.

Source:

- The speed bumps in India's EV drive that no one's talking about, Website of Economic Times, accessed on 23 April 2022
- F. A. Bhat, M. Verma & A. Verma Measuring and Modelling Electric Vehicle Adoption of Indian Consumers, 2021

Aim, Objectives & Methodology

Aim:

To examine various factors affecting EV Adoption & assess current EV policies in order to develop a comprehensive policy framework to accelerate the growth of EVs in Jaipur.

Objectives:

- To assess the importance of EVs in Urban Mobility landscape & shifting towards environmentally sustainable and economically beneficial transport systems
- To review Global literature and policies to identify factors impacting EV Adoption
- To assess the characteristics of EV User, Potential buyers, Charging operator & EV Dealers in the city of Jaipur
- To model the EV Adoption behavior through SEM & identify the key barriers by different stakeholders through application of AHP.
- To propose a Comprehensive Planning & Policy Framework for faster & efficient EV Adoption in Jaipur city.

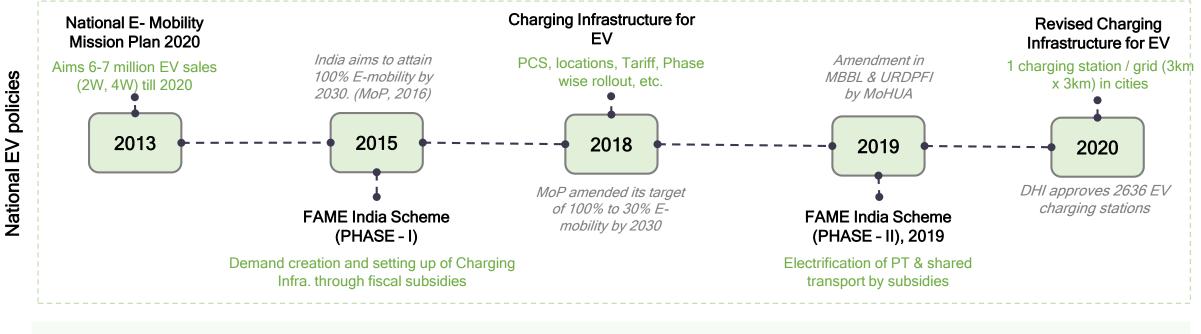
Methodology:

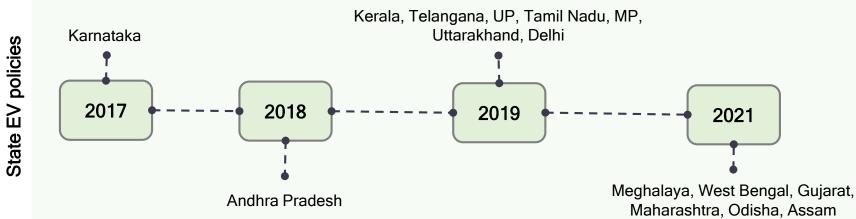
Background

Literature Review

Data Collection

Stakeholder Analysis & AHP


Adoption Behavior Modelling


Proposed Policy EV Framework

Conclusions & Recommendations

National & State EV Policy Initiatives

Inferences

- Comparative study of all state EV policies showed that Karnataka & Telangana have the best drafted EV policies.
- However, EV density of Delhi was observed the highest due to higher fiscal incentives provided by the Delhi govt.

Based on literature review of more than 30 research papers (including Indian and International case studies), few factors and issues relevant to the case study were shortlisted. These are as follows:

Factors & Issues affecting EV adoption

Factors	Barriers/ Issues	Literature Reference
Technical	Limited range of EV's/ Range anxiety	Kumar, R.R. & Kumar, A., 2019 & Stakeholder interaction
	Long Charging Time	Mukherjee, C. et. al.,2019
	Limited EV models	Stakeholder interaction
	Inadequate Charging Infrastructure	Bhattacharyya, S.S. & Thakre, S.,2020
Infrastructural	Lack of Maintenance & Repair workshops	Stakeholder interaction
	Lack of Standardization of chargers	Bhattacharyya, S.S. & Thakre, S., 2020
	Higher upfront cost	Kumar P.P. et al., 2021 &
	High cost of Fast charging at PCS	Stakeholder interaction
Financial	Lack of financing (credit) options	Stakeholder interaction
	Additional cost of charging infrastructure at home	Bhattacharyya, S.S. & Thakre, S.,2020
	Lack of subsidies on Electricity tariff	Stakeholder interaction
	Attitude	
	Moral Norm	
Behavioral	Perceived Behavioral Control	Adnan, N. et al., 2017 Shalender, K. and Sharma, N., 2020
	Subjective Norm	
	Environment Concern	

Inference

It was found that majority of the research was focusing either on a single factor or a combination of two, but none of the papers focused on an overall perspective, taking into account all the issue/ barriers that are suitable with respect to the study context.

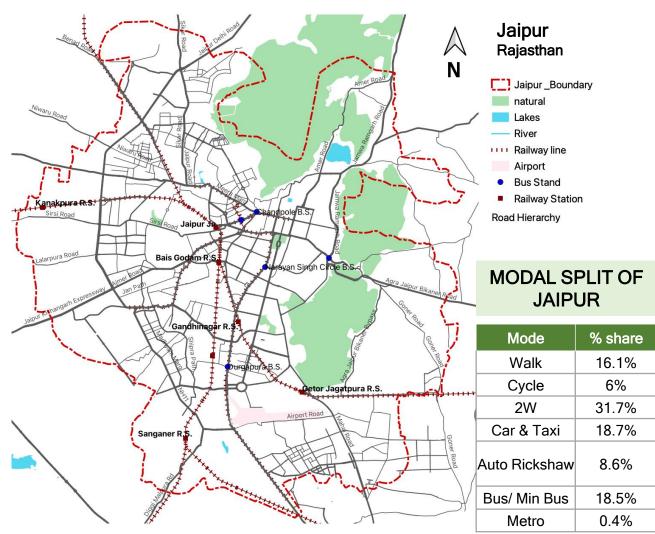
Profile of Case Study of Jaipur

Criteria for Case Selection: Rajasthan's EV policy is in Draft stage

JAIPUR MUNICIPAL AREA PROFILE

- Area: 484.64 Sq.km
- Radial spread: 15 Km
- Population: 30.46 lakh Source: Census of India, 2011
- Avg. Trip length: 6.7 Km Source: CMP Jaipur, 2016

TRANSPORT MODES OF JAIPUR


- Private Modes: 2W, Car, Taxi, Cycle, LCV, etc.
- PT Modes: Bus, Metro, RSRTC, etc.
- IPT Modes: Auto, E-Rickshaw, Cycle Rickshaw, etc.

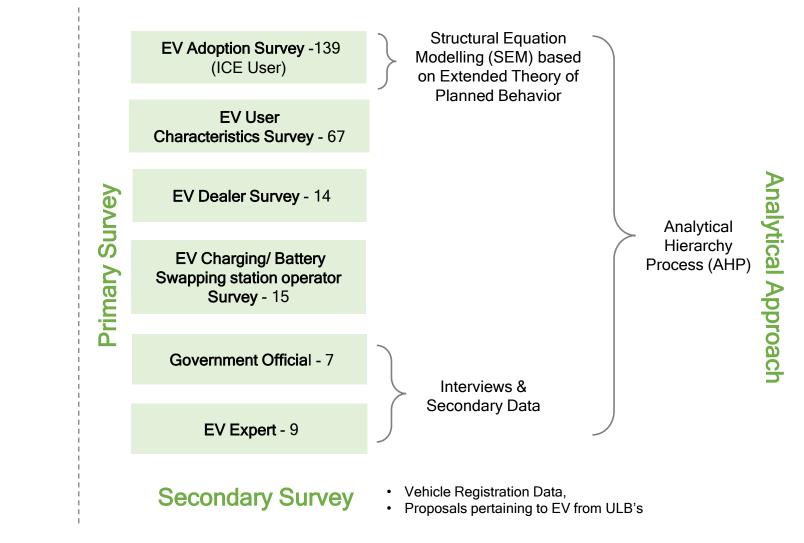
Source: Master Plan of Jaipur- 2025

EV REGISTRATIONS IN JAIPUR

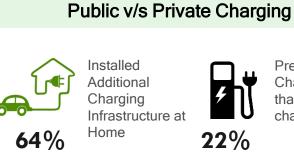
Vehicle	Total Vehicle	% share	
Туре	All Vehicles (ICE +EV)	Electric Vehicles	of EV
2W	13,61,000	8,369	24%
Car	3,88,000	696	2%
E-Rickshaw	20,786	23,627	69%
E-Rickshaw (Cart)	1,752	1,733	5%
3 Wheeler (Goods)	3,370	90	0.3%
Total	17,74,908	34,515	2 %

Source: Website of Vahan Sewa , MoRTH- Parivahan, Accessed on 11 May 2022

Source: Map created through Open Street Map (OSM) data on QGIS 3.1

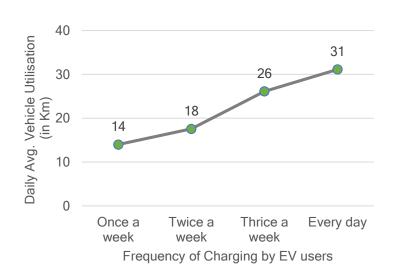

Source: Master Plan , Jaipur- 2025

Identification of EV stakeholders for Field Surveys


Identification of Stakeholders in EV Adoption, Jaipur

- 1. Government Officials (ULB, Transport Department, RTO)
- 2. Power Companies (DISCOM's)
- 3. EV Charging / Battery Swapping Station Operator
- 4. Electric Vehicle (EV) Dealer
- 5. Electric Vehicle (EV) User
- 6. Potential Buyer of EV (ICE Users)
- 7. EV Experts (Consultants, Academicians)
- 8. EV Automakers (Automobile Manufacturers)*
- 9. Battery Manufacturers *

^{*} There are no EV Automobile and Battery Manufacturers located in or around Jaipur.



Prefers Public Charging rather than Private charging

Average Daily Vehicle Utilization
12 Km
35 Km
42 Km

Daily Vehicle Utilisation of EV users

Daily Avg. VU v/s Charging frequency

Access Distance of nearest PCS (from home) for EV users				
< 5 Km	5-10 Km	10-20 Km	>20 Km	
29%	7%	36%	29%	

Charging Behavior of EV Users

Vehicle Segment	Avg. Charging Time	% charged	Range (in Km)
2 wheeler	1 hr	30%	26
E- Rickshaw	4 hr	50%	42
4 wheeler	30 min	50%	100

Operational Characteristics of EVs

Vehicle Segment	Charging Time (Hr)	Driving Range (Km/charge)	Cost (Rs/km)
E - 2W	5.5	78	0.5
E - Rickshaw	7	95	2
E - 4W	9.5	220	1.2

Survey Details

- Surveyed EV Dealers 48%
- Response Rate 100 %

Vehicle Segment	Total EV Dealers	Samples Collected
2 wheeler	17	9
E- Rickshaw	8	2
4 wheeler	4	3
Total	29	14

EV Dealers Surveyed

ATHER

ΤΛΤΛ

ONE LIFE - ONE OPPORTUNITY

PIAGGIO

HOP ELECTRIC MOBI

General Specifications of EVs

Vehicle Segment	No. of Model	Battery Capacity (KW)	Price (in Lakh)	Charging Type
2 wheeler	6	2.2 - 2.9	0.7 - 1.5	3-Plug point
E- Rickshaw	4	7.5 - 8.5	3.0 - 3.5	3-Plug point
4 wheeler	3	30 - 40	12 - 17	CCS, CHAdeMO,
	2	50 - 70	23 - 25	Type 2 AC

Operational Details of EVs

Vehicle Segment	Average Mileage (Km)	Average Charging Time (Hr)	Average Charging Cost/ charge (Rs.)
2 wheeler	90	6	43
E- Rickshaw	110	7.5	90
4 wheeler	240	11	375
4 wileeler	460	8.5	325

EV Charging Infrastructure Characteristics

Survey Details

- Total Charging Operators 23
- Response Collected 15 (65%)

Operators	No. of Stations	Response
ΤΑΤΑ	10	9
Exicom	3	3
Fleely Energy	1	1
Xobolt	1	1
Ather	1	1
Others	7	0
Total	23	15 (65%)

Average Charging Time

Vehicle Segment	Avg. Charging Time	% Charge
2 wheeler	30 min	30%
E - rickshaw	4 hour	50%
4 wheeler	1 hr	40%

Charging Infrastructure

Majority Stations are for - 4 W

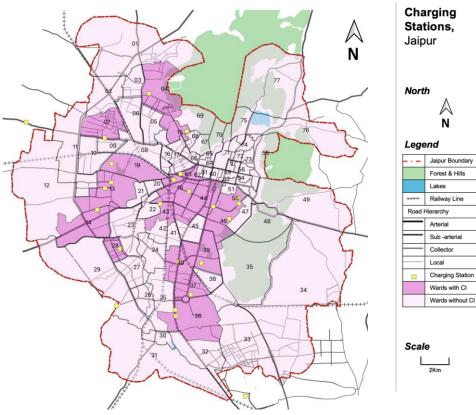
٠

Vehicle Segment	Charging Stations	Samples
2 wheeler	2	2
4 wheeler	18	10
Hybrid	3	3
Total	23	15

Type of Charging Infrastructure

- Only Plug-in charging available
- No Battery Swapping Stations/ EV Models are available in the market in Jaipur.

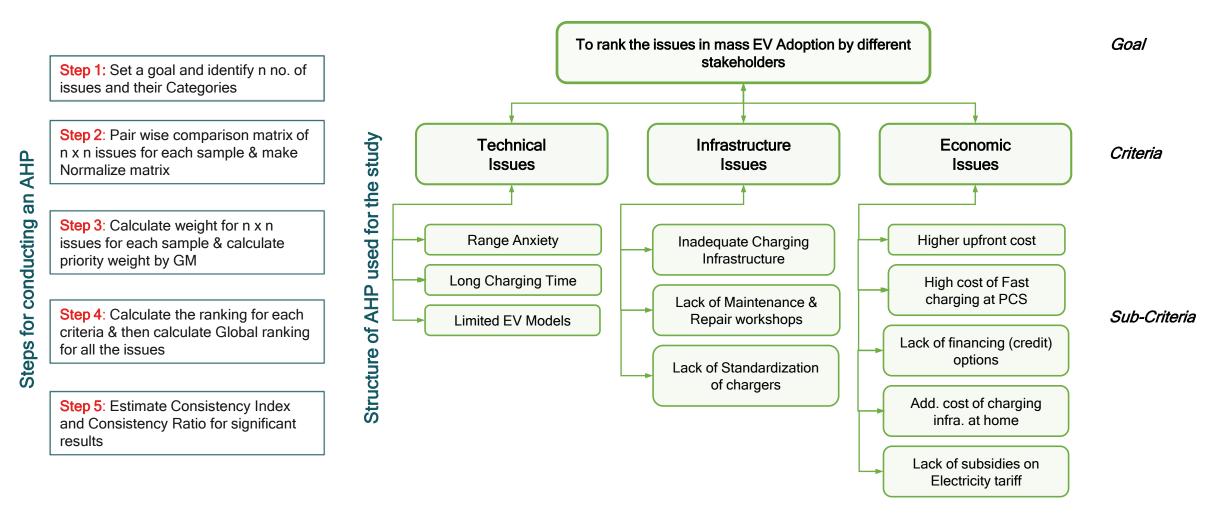
Charging Infrastructure - Coverage



of wards are being served by existing Charging Stations

of Population is being served by existing Charging Stations

Location of Charging Stations



- Wards in Jaipur city : 77
- Charging Stations in Jaipur: 23
- Wards having Charging Stations : 17
- Total Population of Jaipur City : 30.46 Lakh
- Population catered with existing Charging Infrastructure : 6.32 Lakh

Use of AHP in Stakeholders Analysis

Analytical hierarchy process (AHP) is a multi-criteria decision making method & a tool for formulating and analyzing factors or decisions, to rank the identified barriers in order of their importance.

Stakeholder & Sample size

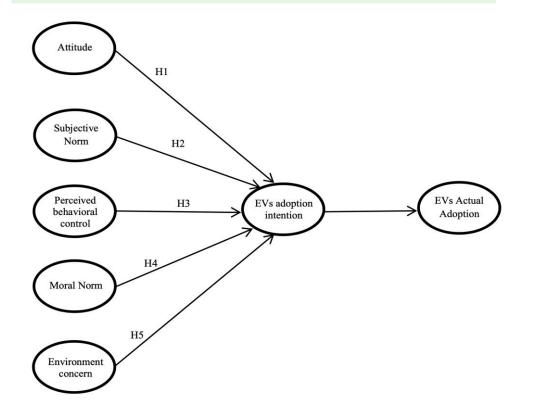
Stakeholder surveyed	EV User	Non User	Charging Operator	EV Dealer	Govt. Official	EV Expert	Total
	15	24	6	5	7	9	66

Global Ranking

Issue	EV User	Non User	Charging Operator	EV Dealer	Govt. Official	EV Expert	Global Ranking*
Inadequate Charging infrastructure	5	4	8	7	1	1	3
Lack of Standardisation of EV chargers	11	11	10	8	10	4	8
Lack of subsidies on Electricity tariff	6	10	7	11	9	9	11
Lack of Maintenance & Repair workshops for EV	9	9	9	6	3	5	7
High cost of Fast charging at Public Charging Infrastructure	3	7	11	10	8	7	9
Range Anxiety/ Low Driving Range	4	1	4	1	3	6	2
Long Charging Time of EV's	2	3	5	4	6	3	4
Higher upfront cost of EV	1	2	1	5	2	2	1
Additional cost of EV charging infra	7	6	6	9	11	11	10
Limited Models of EV's in the market	10	8	2	2	7	8	6
Lack of financing options	8	5	3	3	3	10	5

Inferences

- Inadequate charging infrastructure, higher upfront cost of EVs & lower driving range of EV were the most significant issues in the process of EV adoption in Jaipur.
- Technical issues were the most significant barriers in EV adoption, followed by infrastructure and financial issues, according to the criteria weights and overall stakeholder opinions.



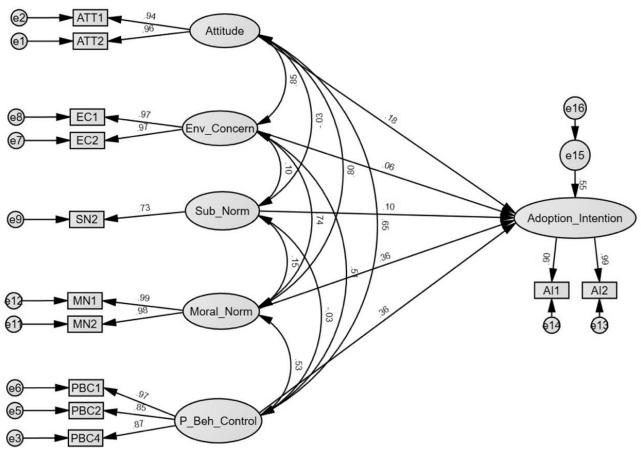
Application of Structural Equation Modelling

Steps for conducting SEM

Model specification >> Data preparation >> Estimation of SEM >> Model evaluation/ modification >> Reports of findings

Extended Theory of Planned Behavior

Source: S. Kumar and N. Sharma , Using extended theory of planned behavior (TPB) to predict willingness of prospective Indian customers to buy EV's in India., 2020


Identified Latent & Observed Variables

Latent Variable	Coding	Observed Variable		
A 44 144 and a	ATT1	I consider adoption of EV favourable		
Attitude	ATT2	Driving an EV will be a wise decision		
Environment	EC1	I take into consideration environment consequences while buying an EV		
Environment Concern	EC2	Buying an EV would help reducing air pollution & contribute to environment for saving future generation		
Moral	MN1	I believe, it as my moral responsibility to adopt EV.		
Norm	MN2	I take into consideration environment consequences while buying an EV		
	PBC1	Overall cost of owing an EV would be low due to incentives		
Perceived	PBC2	EV's are as safe as compared to ICE Vehicles		
Behavior Control	PBC3	I will save on fuel expenses, as op. cost an EV would be lower		
	PBC4	The price of EV is important when I decide to adopt it		
Social Norm	SN1	EV is a status symbol for me		
	SN2	I will consider the wishes of my family / friends while adopting EV		
Adoption	Al1	I would definitely adopt Electric Vehicles in the future.		
Intention	Al2	I would recommend the adoption of Electric Vehicles to others		

*SEM is a multivariate technique which uses a combination of factor analysis and linear regression

Path Diagram

*This model is a result of a primary survey conducted on 139 ICE vehicle users of Jaipur on a 5 point Likert scale for measuring their intention to adopt EVs

Hypothesis Testing

	Path		Path Coefficients (>.05)	T-value (>0.9)	Hypothesis testing
AI	<	PBC	0.36	3.45	Supported
AI	<	MN	0.36	2.23	Supported
AI	<	ATT	0.18	2.36	Supported
AI	<	SN	0.10	7.04	Supported
AI	<	EC	0.06	2.17	Supported

Inferences

- All the factors are positively influencing the EV adoption intention.
- Perceived Behavior Control, Moral Norm and Attitude are the most important variables influencing EV Adoption Intention and Behavior as highlighted by Shalender, K. et al. (2021) and Khurana, A. et al. (2020).
- Environment concern and Subjective norm are not a strong indicator of EV adoption, due to lack of awareness and promotion of EV benefits among the people

Proposed EV Policy parameters & Framework

Policy Drivers	Existing Policies	Proposed Strategies/ Targets/ Proposals	
State EV Policy	No (Only in draft stage)	Rajasthan EV policy to notified with realistic targets, ensuring benefits to all stakeholders	
Regulatory Incentives	No	 30% Share of EV till 2030 and 50% till 2050. Target higher % Share of New EV Registrations in all segments including passenger and freight transport 	
Direct Purchase Incentives	Yes (but lower than others)	 Higher Purchase Incentives on EV's for first 5 years Loans at subsidized Rate of 4% from RFC for EV 	
Indirect Incentives	Yes (but lower than others)	 100% SGST Reimbursement and Registration Fees Waiver in all vehicle segment Other Tax Benefit (Permit fee/ Tolls/ Green Tax Benefits) 	
Awareness Programs	No	 Advertisement of EV & its benefits by Print, TV, Radio & Social Media Awareness to be created through Exhibitions, EV Expo, E Mobility zones for tourists & information dissemination for promoting EV's 	
Charging Infrastructure Incentives	No	 Planning of Fast and Slow EV Charging Stations/ Battery Swapping Stations in the city and its implementation framework with desired Guideline & Standards 25% capital subsidy for purchase of equipment/ machinery for first 100 PCS /Battery Swapping stations 	
Complementary Policies	No	 Subsidized Electricity Tariff for PCS and promote electricity generation through Solar power & V2G technology 100% exemption on Electrical Duty and provision of Repair & Maintenance Workshops all over the city 	
Institutional Framework	No	 State Level Committee to be formed for setting up, implementing and monitoring charging infrastructure Creation of an Umbrella (non-lapsable) "State EV Fund" to be funded through Add. taxes, cess, fees etc. EV Cell in ULB for planning & implementing Incentives & Infrastructure 	
Upskill Training & Job Creation	No	 Setting up Research/ Training Institutes, EV Testing Centres, Quality Control Labs, Promoting Start-ups Develop skill enhancement centres for vocational courses on EV ecosystem 	

Conclusions & Recommendation

Conclusions

- Vehicle Registration Data shows that **7.8% of new vehicles are EV's in Jaipur**, which is less.
- Primary surveys shows that 64% of EV Users charge their EV's at home due to inadequate Public charging infrastructure and limited access to existing charging stations.
- **EV market is very small** as compared to ICE vehicle market due to lower demand, that too with a **high upfront price**.
- EV Adoption behavior model shows that Attitude, Moral Norm & Perceived Control Behaviour majorly influences EV adoption Intention of potential EV buyers
- Higher upfront cost, Low Driving Range & Inadequate charging Infrastructure are priority issues for all the stakeholders & hence critically influences EV adoption.

Recommendation

- Government policies need to be more inclusive on both demand and supply side, thus benefitting all the stakeholders in the process of EV Adoption
- While formulation of any public policy/ incentive, behavior of the potential users should be analysed and taken into consideration

Contribution of the research

- Assessment of issues considering multiple stakeholders involved in EV Adoption, & their inter-dependencies in policy making.
- Addition of behavioral approach for promoting EV's in India with the other technical, infrastructure and financial factors.

Thank you