Predicting a Real Time Passenger Occupancy Using Historical Ticketing Data:

A Case Study of Varanasi

Paper ID: 9707

Authors

- Aadil M Moopan
- Shreepati Jha

- Rahul Kumar Jha
- Dr Agnivesh Pani

IIT (BHU) Varanasi - Transportation Engineering Department

Introduction

- Developing countries lack reliable crowding measures, reducing passenger comfort and ridership – idea of travel itinerary planning is not yet present
- Lack of occupancy data leads to poor transit management, longer wait times, and substantially lesser transit satisfaction
- This study offers a novel method to derive occupancy from ticketing data in tier-2 and tier-3 cities using GTFS and census data
- Improved prediction accuracy helps optimize bus routes and schedules, enhancing service quality and ridership

Figure - Varanasi EV Buses

Extent of Available Literature

- Passenger Willingness: Willingness to take longer routes or pay extra to avoid crowds.
- Improved Distribution: Crowding data enhances traveler distribution, reducing extreme crowding.
- Increased Comfort and Reduced Risks: Better information boosts comfort and mitigates issues like bus bunching and health risks.(*Drabicki et al.*, 2022)(*Thomas et al.*, 2022)
- **Effective Resource Allocation**: Knowing crowding patterns enables better resource allocation and scheduling of extra services.(*Marra et al.*, 2022; *Shelat et al.*, 2022)

Research Background

Aim of Research

Developing real-time transit occupancy prediction models are a critical imperative for crowd management and preempting the service level changes required at the level of a transit system. Transit agencies' experiences evident in the literature underline that occupancy information enhances the passenger satisfaction and overall system reliability.

Expected Outcomes

- **Enhancing Operational Efficiency**: Accurate occupancy predictions allow transit agencies to optimize route planning and schedules for EV buses, reducing trips with low ridership and extending battery lifespan.
- **Improving Passenger Comfort**: Predicting occupancy helps alleviate overcrowding, enhancing passenger comfort and satisfaction while encouraging more people to use public transportation.
- **Sustainable Urban Mobility**: Occupancy prediction aids in optimizing electric bus operations, contributing to a sustainable transportation system and reducing the carbon footprint.
- **Leveraging Advanced Technologies**: Utilizing AI/ML and big data analytics, along with a real-time dashboard, enables predictive analysis and data-driven decision-making for transit agencies.

Data Sources – Ticketing Data

Figure - Bus routes and stop location in Varanasi district

Table - Key metrics related to Varanasi Bus

Metric	Value
	Approximately
Average Daily Ridership	7,658 passengers
Number of Routes Covered	26 routes
Total Number of Buses	56 buses
Average Ticket Price	₹ 28.84
Average Daily Revenue from Ticket Sales	₹ 2,20,836
Average Ridership per Bus, per Route,	
per Trip	29.35 passengers
Total Unique Stops Served	114 stops
Number of Stops Within City Limits	45 stops
Average Speed of Buses	14.3 km/h

Specific Research Problem Addressed

Occupancy of a bus stop = Occupancy of Previous stop + Boarding of the current stop - Alighting of the current stop

Based on the observation and Preliminary study of the ticketing data, 22% of the passenger trips experience overloading in the peak hours of the day

- Data-driven decisions enhance transit efficiency and service quality by prioritizing passenger comfort over convenience in crowded situations.
- Consistent bus spacing reduces crowding and health concerns
- Effective crowd management enhances comfort for all passengers

Figure -Demand Category v/s Count

- Low: 0% to 33% of total vehicle capacity.
- Medium: 33% to 66% of total vehicle capacity.
- High: 66% to 100% of total vehicle capacity.
- Overload: 100%+ of total vehicle capacity.

Data Preprocessing

Missing Values	Problem: Missing values can bias results. Solution: Used KNN Imputation to fill gaps , using similar data points to estimate missing values.
Categorical Variables	Problem: Categorical variables aren't directly usable. Solution: Applied One-Hot Encoding to convert categories into a binary format for machine learning.
Continuous Variables	Problem: Differing scales in continuous variables can skew results. Solution: Used scaling techniques (Min-Max and Standardization) to normalize data.

Data Preprocessing

Socio Demographics & Economic Preparing Night Time Light(NTL) Dataset Geospatial Dataset Indicators - 2011 Census Data Household Density **Data Access:** VIIRS collected and raster Village boundary Shapefile downloaded from OVSF/clipping Population Density /10(SOI,2023), Percent of SC or ST Population Data Pre-Processing: Perform noise reduction and calibration Sex Ratio Gathered ward dataset at the urban level. Literacy Rate Data Alignment: Conduct georeferencing, Percent of Workers projection, and resampling Merged shapefile with the ward Share of Main Work in Agriculture dataset.(114 Zones) GIS Integration: Overlay spatial data and Share of Main Work in Industry perform spatial queries Share of Main Work in Services Mapped 16 variable from Road Density **Extraction of Mean NTL**: Apply masking and Census 2011 and NTL to zones. Rail Density spatial aggregation (mean, median) Water Density Validated accuracy and Intersection Density Additional Indicators: Compute SD, max/min completeness of the dataset. intensity, and temporal change Share of Marginal Work in Agriculture Share of Marginal Work in Industry Mean Night-Time Light (NTL) for each Dataset ready for the analysis Share of Marginal Work in Services zone/ward in Varanasi

Summary of Preprocessed Dataset

Descriptive statistics of all Socio economic +NTL dataset

std	max	75%	50%	25%	min	mean	count	
3758.263769	84690.0	9388.0	6216.0	3124.0	1.0	6265.848798	271220.0	Trip_ID
10.477135	97.0	18.0	9.0	3.0	0.0	11.58398	271220.0	Demand
NaN	2023-07-11 00:00:00	2023-06-28 00:00:00	2023-06-16 00:00:00	2023-06-04 00:00:00	2023-05-24 00:00:00	2023-06-16 14:19:08.198510848	271220	Date
100480.841623	249531.0	209465.0	209039.0	32.0	3.0	135091.217974	271220.0	Zone_ID
1711.992308	11884.60629	1998.909	421.9084	365.0311	0.0	1356.079276	271220.0	HH_DEN
11378.633821	89315.41129	11578.25	2842.751	2460.817	228.4317	8945.209164	269423.0	POP_DEN
7.191406	40.265487	14.672708	10.447603	7.277377	0.0	11.246826	269423.0	SCST_CENT
48.883303	1065.594059	928.5547	897.042607	871.665133	737.963265	893.2146	269423.0	SEX_RATIO
18.624042	78.80214	62.93882	60.477723	30.438312	16.866709	50.251712	269423.0	LIT_RATE
6.56053	51.348113	34.612993	30.778703	29.66198	19.911504	32.889839	269423.0	WORK_CENT
5.959256	49.191132	27.92544	25.274725	21.74177	9.538003	24.645112	269423.0	MAINWORK_CENT
12.849296	97.658402	84.513591	79.38428	68.073879	22.87234	75.207389	269423.0	MAINWORK_SHARE
10.411958	54.898419	18.86737	12.746835	10.204369	3.611519	16.372026	271220.0	ROAD_DEN
266.107748	1357.877313	9.730227	0.086957	0.0	0.0	109.251331	271220.0	RAIL_WATER_DEN
303.939973	1251.751169	334.5355	64.85643	47.69689	16.171117	239.957286	271220.0	INT_DEN
17.794448	60.939944	34.677212	12.324284	7.009539	1.683888	20.874675	271220.0	ntl_mean
5.069658	33.105023	10.176991	6.87865	4.74318	0.622939	8.244728	269423.0	MARGWORK_CENT
12.849296	77.12766	31.926121	20.615723	15.486409	2.341598	24.79261	269423.0	MARGWORK_SHARE

Figure - Descriptive statistics of all Socio economic +NTL dataset

Occupancy over 45 days of Collected data

Figure - Occupancy distribution of Bus network in a 45 days period

Methodological Framework

Trip Level Analysis

Model	Accuracy	Precision	Recall	F1-score	Custom Accuracy Metric
RF without stop characteristics	0.553	0.6662	0.553	0.5944	0.553
XGB without stop characteristics	0.6582	0.5999	0.6582	0.6032	0.6582
RF with stop characteristics	0.5441	0.6698	0.5441	0.5834	0.5441
XGB with stop characteristics	0.6573	0.6355	0.6573	0.6297	0.6573

Table - Trip Level Model Comparisons

Feature Importance: The total effect of each variable on transit trip occupancy is analyzed, highlighting their influence on the final outcome. **Key Predictors**: The time interval is identified as the most significant variable for predicting occupancy, followed by Route ID, Weekday, and stop station.

A confusion matrix is a 4x4 table that assesses a classification model's accuracy by comparing actual and predicted values across four categories (0, 1, 2, 3).

Figure - Confusion Matrix for best XGBoost Model

Figure - Feature Importance of XGBoost Model

Additional Contributors: Household Density, Mean Night Time Light, Percent of SC/ST, and Literacy Rate also significantly contribute to the model's predictions.

Stop Level Analysis

Model	Accurac y	Precision	Recall	F1-Score	Custom Accuracy Metric
XGB with stop characteristics	0.6527	0.6136	0.6527	0.6168	0.6527
Random Forest with stop characteristics	0.5706	0.6676	0.5706	0.6056	0.5706

Table - Stop Level Model Comparisons

Permutation Importance: A model-agnostic technique that estimates feature importance by shuffling feature values and observing the impact on model performance.

Figure- Permutation Importance of Best model

Key Features in Occupancy Prediction: In predicting stop-level occupancy, Route ID is critical, while the average level of Night Time Light (NTL_MEAN) emerges as the most influential factor. Higher NTL values correlate with increased occupancy, and additional important features include Road Density and Intersection Density, indicating that well-developed road networks also contribute to higher occupancy rates.

Line Level Analysis

Most Crowded Lines of Varanasi

Route ID	Demand	
E106	636405	
E104	589078	
E102	503558	
E105	350249	
E101	201032	
E103	129804	

2 most crowded routes

Comparison study of two routes – E106 and E104

Bus Line	Number of Stops	Key Features
E106	30	Starts in the outskirts, passes through the city center, ends in another outskirt area; includes Cantt Railway Station.
E104	34	Starts in the outskirts, passes through the city center, ends in another outskirt area; includes Cantt Railway Station.

Line Level Analysis

Zone Level Analysis

At the zonal level, we used a Random Forest Regressor to predict occupancy, evaluating its performance with two key metrics:

- **Mean Squared Error (MSE)**: Measures the average of squared differences between predicted and actual values. Our model's MSE is 0.04384, indicating low error and sensitivity to outliers.
- Mean Absolute Error (MAE): Assesses the average absolute differences between predicted and actual values. The MAE for our model is 0.15688, suggesting a modest deviation without emphasizing larger errors.

Together, these metrics indicate the model's accuracy, with low MSE showing strong performance and MAE reflecting robustness against extreme deviations.

Figure - SHAP Analysis for Random Forest Regressor

Final Dashboard Developed for Transit Management

Thank You

For More Information:

Shreepati Jha Incoming PhD Student University of Alabama at Birmingham

Project Fellow at IIT BHU Varanasi

Email: shreepatijha777@gmail.com

Research Lab Website: Dr. Agnivesh Pani's SCULPT{Lab} http://sculptlab.in/ (agnivesh.civ@iitbhu.ac.in)