Data Analytics based Dynamic Passenger Information System

Rakesh Behera 4th year B. Tech. student Dept. of Civil Engineering IIT Madras

Devarsh Kumar 4th year dual degree student Dept. of Civil Engineering IIT Madras Lelitha Vanajakshi Associate Professor Dept. of Civil Engineering IIT Madras

Public transportation issues Proposed solution ► Literature review ► Data and pre-processing ► Travel time prediction ► Application ► Conclusion

► Public transportation issues Proposed solution ► Literature review ► Data and pre-processing ► Travel time prediction ► Application ► Conclusion

Public Transportation Issues

otal time ken by ssenger

walkingtime fromorigin tobus stop

waiting + time at + the bus stops (original / transfer)

actual walking travel + time time from on bus bus stop to destinatio

Public transportation issues Proposed solution ► Literature review ► Data and pre-processing ► Travel time prediction ► Application ► Conclusion

Proposed Solution

Bus arrival information system
 Based on travel time prediction using real-time and historical data

Trip planner

Recommends riders the quickest route along with bus information

Public transportation issues Proposed solution ► Literature review ► Data and pre-processing ► Travel time prediction ► Application ► Conclusion

Literature Review

Author(s)	Input data	Prediction technique	Approach
Bo <i>et al</i> .	One month weekdays bus trip data	Linear regression	Data driven
Patnaik <i>et al</i> .	6 months weekday data	Regression	Data driven
Bhandari	7 months AVL data	Time series	Data driven
Liu <i>et al</i> .	82 days volume and flow data	ANN	Data driven
Krishnan <i>et al</i> .	15 minute aggregate flow data for 3 months	k – Nearest Neighbor	Model based
Vanajakshi <i>et al</i> .	Preceding 2 buses data	Kalman filtering	Model based
Dailey <i>et al</i> .	Different days trips at the same time of the day	Kalman filtering	Model based

Public transportation issues Proposed solution ► Literature review ► Data and pre-processing ► Travel time prediction ► Application ► Conclusion

Raw Data

- ▶ 85 days GPS data for 2 buses chosen for demo.
- Buses belonged to two routes sharing common end points.
- Sampling rate: 6 logs/minute.
- Each day had approx. 8000 GPS logs.
- Each record had a timestamp, latitude and longitude of the location of the bus.

Sample Raw Data

Timestamp (dd-mm-yyyy HH:MM:SS)	Longitude (degrees)	Latitude (degrees)
17-09-2013 09:30:22	80.12769318	12.92300034
17-09-2013 09:30:32	80.12789917	12.92298985
17-09-2013 09:30:43	80.12844849	12.92292023
17-09-2013 09:30:53	80.12899781	12.92286968
17-09-2013 09:31:03	80.12966156	12.92282963

loutes Chosen

Figure 1. GPS dat two routes plotted Google Earth

Data Preprocessing

- The data were transformed into traffic data e.g. travel time, distance, speed.
- Distances were calculated using haversine formula.
- The data were split into sets belonging to individual trips.
- Historical travel times on each 500 m segment of each route were calculated.

Processed Data

Timestamp (dd-mm-yyyy HH:MM:SS)	Longitude (degrees)	Latitude (degrees)	TimeDiff (s)	Dist (m)	CumulDist (m)	Spee (m/s
09-2013 09:30:22	80.12769318	12.92300034	10	43.11	294.16	4.3
09-2013 09:30:32	80.12789917	12.92298985	10	22.38	316.54	2.24
09-2013 09:30:43	80.12844849	12.92292023	11	60.11	376.65	5.46
09-2013 09:30:53	80.12899781	12.92286968	10	59.87	436.52	5.99
-09-2013 09:31:03	80.12966156	12.92282963	10	72.17	508.69	7.22

Public transportation issues Proposed solution ► Literature review ► Data and pre-processing ► Travel time prediction ► Application ► Conclusion

Clustering

- Historical travel times on segments were clustered using the V-clustering algorithm (Lee et al. 2012).
- ► Brief explanation of V clustering:
 - ► For a segment, historical travel times are sorted.
 - ▶ The list is split at an element that minimizes weighted average variance.
 - The child lists are split recursively until a minimum of 25 travel times in each list.

$$WAV^{i} = \left|\frac{L_{1}^{i}}{L}\right| * Var(L_{1}^{i}) + \left|\frac{L_{2}^{i}}{L}\right| * Var(L_{2}^{i})$$

This led to the reduction of search space for prediction algorithm.

Average Travel Time = 87.5

Travel time prediction

Prediction of travel time on upcoming segments:

- 1. Past segment travel times are calculated.
- 2. The cluster to which these travel times should belong to is searched for.
- 3. The cluster found suggests historical trajectories similar to the current one.
- 4. Travel times on upcoming segments are calculated by averaging corresponding values from similar historical trajectories.

Public transportation issues Proposed solution ► Literature review ► Data and pre-processing ► Data analysis ► Travel time prediction ► Application ► Conclusion

Application

Bus arrival information system

- Predicted travel times on the segments are added up to obtain arrival times at bus stops.
- Predictions update every one minute as the bus moves from one segment to another.

Trip planner

- ► The rider inputs the origin and destination.
- The algorithm suggests the quickest route by finding the minimum weight (time) path from origin to destination.

Public transportation issues Proposed solution ► Literature review ► Data and pre-processing ► Data analysis ► Travel time prediction ► Application ► Conclusion

Conclusion

- Classification of historical trips and clustering of travel times led to faster real time predictions.
- Use of optimal number of previous segments led to more accurate predictions.
- Smaller interval between updates provides the rider with the latest information.
- The promising results indicate that the approach can be implemented under Indian traffic scenarios.

Contact

► Rakesh Behera Email: rakesh8248@gmail.com ► Phone: +919884995394 Devarsh Kumar Email: devarsh10iitm@gmail.com ► Phone: +919884992880 Lelitha Vanajakshi ► Email: lelitha@iitm.ac.in

Thank you

Public transportation issues Proposed solution ► Literature review Data and pre-processing Data analysis Travel time prediction ► Results ► Application Conclusion

Results

Measures of accuracy
MAPE, MPE, RMSE
Histograms of prediction errors were plotted.
Effect of considering varying number of previous segments was analyzed using error distributions.

tripID, seg12, seg23, seg34 trip1, 170.53, 172.26, 174.45 trip2, 175.78, 173.98, 177.14 trip3, 178.23, 177.29, 176.87

Error distributions

re 5. Absolute percentage rs by considering 1 previous nent. Figure 6. Absolute percentage errors by considering 2 previous segments. Figure 7. Absolute percentage errors by considering 3 previou segments.

Results

MSL	MPE (%)	MAPE (%)	RMSE (s)
1	2.80	12.02	9.22
2	0.75	8.72	7.20
3	1.78	9.19	8.08
4	1.89	9.38	8.26
5	1.96	9.76	8.46
6	1.93	10.10	8.68
7	1.99	10.05	8.40

Measures of Accuracy

MAPE: Mean Absolute Percentage Error

MAPE =
$$\frac{1}{n} \sum_{i=1}^{n} \left| \frac{\widehat{T}_{i} - T_{i}}{T_{i}} \right| * 100$$

MPE: Mean Percentage Error

$$MPE = \frac{1}{n} \sum_{i=1}^{n} \frac{\widehat{T}_{i} - T_{i}}{T_{i}} * 100$$

RMSE: Root Mean Square Error

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} \left(\widehat{T}_{i} - T_{i}\right)^{2}}{T_{i}}}$$

Public transportation issues Proposed solution ► Literature review ► Data and pre-processing ► Data analysis Travel time prediction ► Results ► Application Conclusion

Data Analysis

Used for classifying historical trips into groups of similar characteristics.

Analyses

- ► Within day travel time variation
- Weekdays versus weekends
- Monthly variation

Nithin – day variation

Figure 2. Space-time trajectories for south bound trips on route B51 in Chennai show within – day variation

Neekdays versus weekends

Figure 3. Space-time trajectories for south bound trips on route V51 in Chennai comparing weekend an weekday trips.

Monthly variation

Figure 4. Space-time trajectories for south bound trips on route B51 in Chennai show monthly variation.

Haversine Formula

$$D = R * \cos^{-1}(a+b)$$

where

 $D = distance \ between \ two \ GPS \ points$ $R = mean \ radius \ of \ Earth \ = 6371000 \ m$

$$a = \cos\left(\frac{f}{2} - lat_1\right)\cos\left(\frac{f}{2} - lat_2\right)$$

$$b = \sin\left(\frac{f}{2} - lat_1\right) \sin\left(\frac{f}{2} - lat_2\right) \cos\left(long_1 - long_2\right)$$

 $lat_1 = latitude of the first GPS point$ $lon_1 = longitude of the first GPS point$ $lat_2 = latitude of the second GPS point$ $lon_2 = longitude of the second GPS point$